簡易檢索 / 詳目顯示

研究生: 謝佑翎
Hsieh, Yu-Ling
論文名稱: 乙醇與膽固醇對DPPC脂質體雙層膜特性之影響
Ethanol and Cholesterol Effects on Bilayer Characteristics of DPPC Liposomes
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 脂質體雙層膜堅硬度螢光偏極化乙醇效應膽固醇效應
外文關鍵詞: liposomes, bilayer rigidity, fluorescence polarization technique, ethanol effect, cholesterol effect
相關次數: 點閱:129下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用磷脂質DPPC作為主材料,混合不同濃度的乙醇與膽固醇,並以強制型製程製備穩定的脂質體,藉以探討乙醇、膽固醇個別添加與同時添加於脂質體時,對液胞粒徑、界面電位、雙層膜堅硬度及相轉移行為等物理特性的影響。
    探討乙醇、膽固醇個別添加的效應,實驗結果顯示,添加乙醇後,液胞粒徑無明顯變化,但界面電位會下降。添加膽固醇後,液胞粒徑會上升,界面電位則下降。以螢光偏極化偵測液胞雙層膜堅硬度及相轉移行為,可發現乙醇主要干擾雙層膜頭基區域的排列,使相轉移溫度下降;膽固醇主要影響雙層膜核心位置之碳鏈秩序,對雙層膜相轉移溫度影響不大,且在相轉移溫度之上與之下,膽固醇的添加會誘發有序液晶相的形成,對雙層膜的堅硬度呈現相反效應。
    探討乙醇、膽固醇同時添加的效應,實驗結果顯示,固定膽固醇濃度,乙醇的添加,對液胞粒徑影響無一致趨勢,但會使界面電位下降,且使雙層膜在相轉移溫度之上時流動性提升;當固定乙醇濃度,膽固醇的添加,會使液胞粒徑呈現先下降後持平的趨勢,界面電位則無顯著影響,且膽固醇對雙層膜堅硬度同樣出現相反效應。

    The aim of this study was to investigate the effect of ethanol and cholesterol, respectively and simultaneously, on bilayer characteristics of DPPC liposomes. Stable liposomes were fabricated by using lipid with various amounts of ethanol and cholesterol in water through a forced formation approach, and the physical properties of vesicles were investigated by size, zeta potential and fluorescence polarization. In this work, fluorescence polarization was measured at different temperatures and typical sigmoidal thermograms could be observed.
    Experimental results revealed that the sizes of vesicles didn't show consistent trend, but zeta potential would decrease with addition of ethanol. Fluorescence polarization showed that addition of ethanol is likely to disorder part of the lipid headgroup region and decrease of phase transition temperature. Addition of cholesterol would increase the sizes and decrease zeta potentials of vesicles. However, as the liposomes also contained high concentration of ethanol, the effect of cholesterol was quite different and showed no consistent trend. Fluorescence polarization showed that the addition of cholesterol had no significant effect on phase transition temperature of lipid bilayers, but it would lead to disordering and condensing effect on vesicular bilayer rigidity at different phases. The opposite effect of cholesterol attributed to the formation of liquid ordered phase, and it could also be observed from liposomes with high concentration of ethanol.

    摘要 I Extended Abstract II 致謝 IX 總目錄 X 表目錄 XIV 圖目錄 XVI 符號 XXII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 7 第二章 文獻回顧 9 2-1 脂質體的結構與型態 9 2-2 脂質體的形成 10 2-3 乙醇體 13 2-4 脂質體的物理穩定性 16 2-5 脂質體的化學穩定性 20 2-6 添加劑對液胞雙層膜的特性之影響 22 2-6-1 乙醇效應 22 2-6-2 膽固醇效應 25 2-7 螢光偏極化測量原理 32 第三章 實驗 38 3-1 實驗藥品 39 3-2 實驗儀器及裝置 40 3-2-1 超音波震盪分散裝置 40 3-2-2 動態雷射光散射法粒徑/界面電位分析儀 (Dynamic Light Scattering, DLS) 41 3-2-3 螢光分光光譜儀 (Fluorescence spectrometer) 45 3-2-4 電子控溫裝置 48 3-2-5 穿透式電子顯微鏡 49 3-3 實驗方法 50 3-3-1 DPPC脂質體的製備 50 3-3-2 粒徑分布、界面電位與液胞存活期的測量 51 3-3-3 液胞雙層膜之螢光偏極化的測定 53 3-3-4 穿透式電子顯微鏡的分析 55 第四章 結果與討論 56 4-1 使用螢光偏極化偵測液胞雙層堅硬度之實驗條件 57 4-1-1 如何將螢光分子正確導入液胞雙層膜 57 4-1-2 螢光分子濃度與液胞物理性質之關聯 63 4-1-3 DPH螢光分子在乙醇水溶液中之螢光強度 65 4-2 乙醇效應 68 4-2-1 添加乙醇對DPPC脂質體粒徑、界面電位與穩定性之影響 68 4-2-2 添加乙醇的DPPC脂質體其表面型態 71 4-2-3 添加乙醇對DPPC脂質體雙層膜堅硬度與相轉移行為之影響 72 4-3 膽固醇效應 73 4-3-1 添加膽固醇對DPPC脂質體粒徑、界面電位與穩定性之影響 73 4-3-2 添加膽固醇的DPPC脂質體其表面型態 76 4-3-3 添加膽固醇對DPPC脂質體雙層膜堅硬度與相轉移行為之影響 77 4-4 同時添加乙醇與膽固醇之效應 81 4-4-1 同時添加乙醇及膽固醇對DPPC脂質體粒徑、界面電位與穩定性之影響 81 4-4-2 同時添加乙醇及膽固醇的DPPC脂質體其表面型態 86 4-4-3 同時添加乙醇及膽固醇對DPPC脂質體雙層膜堅硬度與相轉移行為之影 87 第五章 結論與建議 88 5-1 結論 88 5-2 建議 90 參考文獻 91

    1. Jesorka, A.; Orwar, O., Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem. 2008, 1, 801-832.
    2. Bangham, A.; Standish, M. M.; Watkins, J., Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology 1965, 13, 238-IN27.
    3. Gregoriadis, G.; Leathwood, P.; Ryman, B. E., Enzyme entrapment in liposomes. FEBS Letters 1971, 14, 95-99.
    4. Karmali, P. P.; Chaudhuri, A., Cationic liposomes as non‐viral carriers of gene medicines: resolved issues, open questions, and future promises. Medicinal Research Reviews 2007, 27, 696-722.
    5. Deepthi, V.; Kavitha, A., Liposomal drug delivery system-a review. Journal of Pharmaceutical Sciences 2014, 4, 47-56.
    6. Mouritsen, O. G., Lipids, curvature, and nano‐medicine. European Journal of Lipid Science and Technology 2011, 113, 1174-1187.
    7. Subedi, R. K.; Oh, S. Y.; Chun, M.-K.; Choi, H.-K., Recent advances in transdermal drug delivery. Archives of Pharmacal Research 2010, 33, 339-351.
    8. Himanshu, A.; Sitasharan, P.; Singhai, A., Liposomes as drug carriers. International Journal of Pharmacy and Life Sciences 2011, 2, 945-951.
    9. Van Gele, M.; Geusens, B.; Brochez, L.; Speeckaert, R.; Lambert, J., Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations. Expert Opinion on Drug Delivery 2011, 8, 705-720.
    10. Cevc, G., Lipid vesicles and other colloids as drug carriers on the skin. Advanced Drug Delivery Reviews 2004, 56, 675-711.
    11. Elsayed, M. M.; Abdallah, O. Y.; Naggar, V. F.; Khalafallah, N. M., Lipid vesicles for skin delivery of drugs: reviewing three decades of research. International Journal of Pharmaceutics 2007, 332, 1-16.
    12. Trommer, H.; Neubert, R., Overcoming the stratum corneum: the modulation of skin penetration. Skin Pharmacology and Physiology 2006, 19, 106-121.
    13. Cevc, G.; Blume, G., Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochimica et Biophysica Acta (BBA)-Biomembranes 1992, 1104, 226-232.
    14. Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M., Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of Controlled Release 2000, 65, 403-418.
    15. Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K., Liposome: classification, preparation, and applications. Nanoscale Research Letters 2013, 8, 102.
    16. Israelachvili, J., Fluid-Like Structures and self-assembling systems: micelles, bilayers and biological membranes. Intermolecular and Surface Forces 1992, 340-450.
    17. Barry, J. A.; Gawrisch, K., Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry 1994, 33, 8082-8088.
    18. Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B. W.; Holopainen, J.; Karttunen, M., Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophysical Journal 2006, 90, 1121-1135.
    19. Grit, M.; Crommelin, D. J., Chemical stability of liposomes: implications for their physical stability. Chemistry and Physics of Lipids 1993, 64, 3-18.
    20. McLaughlin, A.; Eng, W.-K.; Vaio, G.; Wilson, T.; McLaughlin, S., Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes. The Journal of Membrane Biology 1983, 76, 183-193.
    21. Petrache, H. I.; Zemb, T.; Belloni, L.; Parsegian, V. A., Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proceedings of the National Academy of Sciences 2006, 103, 7982-7987.
    22. Evans, E.; Needham, D., Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem 1987, 91, 4219-4228.
    23. Grasso, D.; Subramaniam, K.; Butkus, M.; Strevett, K.; Bergendahl, J., A review of non-DLVO interactions in environmental colloidal systems. Reviews in Environmental Science and Biotechnology 2002, 1, 17-38.
    24. Sabın, J.; Prieto, G.; Ruso, J.; Hidalgo-Alvarez, R.; Sarmiento, F., Size and stability of liposomes: a possible role of hydration and osmotic forces. The European Physical Journal E: Soft Matter and Biological Physics 2006, 20, 401-408.
    25. Brown, M. F.; Thurmond, R. L.; Dodd, S. W.; Otten, D.; Beyer, K., Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. Journal of the American Chemical Society 2002, 124, 8471-8484.
    26. Walz, J. Y.; Ruckenstein, E., Comparison of the van der Waals and undulation interactions between uncharged lipid bilayers. The Journal of Physical Chemistry B 1999, 103, 7461-7468.
    27. Pajean, M.; Herbage, D., Effect of collagen on liposome permeability. International Journal of Pharmaceutics 1993, 91, 209-216.
    28. Jones, G.R.; Cossins, A.R., Physical methods of study. In: New, R.R. (Ed.), Liposomes: a practical approach. Oxford University Press, Oxford, p. 200, 1990.
    29. Toppozini, L.; Armstrong, C. L.; Barrett, M. A.; Zheng, S.; Luo, L.; Nanda, H.; Sakai, V. G.; Rheinstädter, M. C., Partitioning of ethanol into lipid membranes and its effect on fluidity and permeability as seen by X-ray and neutron scattering. Soft Matter 2012, 8, 11839-11849.
    30. Bach, D.; Borochov, N.; Wachtel, E., Phase separation of cholesterol and the interaction of ethanol with phosphatidylserine–cholesterol bilayer membranes. Chemistry and Physics of Lipids 2002, 114, 123-130.
    31. Huang, C.; McIntosh, T., Probing the ethanol-induced chain interdigitations in gel-state bilayers of mixed-chain phosphatidylcholines. Biophysical Journal 1997, 72, 2702-2709.
    32. Komatsu, H.; Rowe, E. S., Effect of cholesterol on the ethanol-induced interdigitated gel phase in phosphatidylcholine: use of fluorophore pyrene-labeled phosphatidylcholine. Biochemistry 1991, 30, 2463-2470.
    33. Li, S.; Lin, H.; Wang, G.; Huang, C., Effects of alcohols on the phase transition temperatures of mixed-chain phosphatidylcholines. Biophysical Journal 1996, 70, 2784-2794.
    34. Roth, L. G.; Chen, C. H., Thermodynamic elucidation of ethanol-induced interdigitation of hydrocarbon chains in phosphatidylcholine bilayer vesicles. The Journal of Physical Chemistry 1991, 95, 7955-7959.
    35. Rowe, E. S.; Cutrera, T. A., Differential scanning calorimetric studies of ethanol interactions with distearoylphosphatidylcholine: transition to the interdigitated phase. Biochemistry 1990, 29, 10398-10404.
    36. Slater, S. J.; Ho, C.; Taddeo, F. J.; Kelly, M. B.; Stubbs, C. D., Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Biochemistry 1993, 32, 3714-3721.
    37. Wachtel, E.; Borochov, N.; Bach, D.; Miller, I., The effect of ethanol on the structure of phosphatidylserine bilayers. Chemistry and Physics of Lipids 1998, 92, 127-137.
    38. Zeng, J.; Smith, K. E.; Chong, P., Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles. Biophysical Journal 1993, 65, 1404-1414.
    39. El Khoury, E.; Patra, D., Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes. Journal of Photochemistry and Photobiology B: Biology 2016, 158, 49-54.
    40. Bernsdorff, C.; Winter, R., Differential properties of the sterols cholesterol, ergosterol, β-sitosterol, trans-7-dehydrocholesterol, stigmasterol and lanosterol on DPPC bilayer order. The Journal of Physical Chemistry B 2003, 107, 10658-10664.
    41. Mannock, D. A.; Lewis, R. N.; McElhaney, R. N., Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophysical Journal 2006, 91, 3327-3340.
    42. Aramaki, K.; Watanabe, Y.; Takahashi, J.; Tsuji, Y.; Ogata, A.; Konno, Y., Charge boosting effect of cholesterol on cationic liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 506, 732-738.
    43. Benesch, M. G.; Lewis, R. N.; Mannock, D. A.; McElhaney, R. N., A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chemistry and Physics of Lipids 2015, 187, 34-49.
    44. Benesch, M. G.; Lewis, R. N.; McElhaney, R. N., A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chemistry and Physics of Lipids 2015, 191, 123-135.
    45. Benesch, M. G.; McElhaney, R. N., A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2014, 1838, 1941-1949.
    46. Blandamer, M. J.; Briggs, B.; Cullis, P. M.; Rawlings, B. J.; Engberts, J. B., Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC. Physical Chemistry Chemical Physics 2003, 5, 5309-5312.
    47. El Maghraby, G.; Williams, A. C.; Barry, B., Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. International Journal of Pharmaceutics 2004, 276, 143-161.
    48. Fritzsching, K. J.; Kim, J.; Holland, G. P., Probing lipid–cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13 C solid-state NMR. Biochimica et Biophysica Acta (BBA)-Biomembranes 2013, 1828, 1889-1898.
    49. Halling, K. K.; Slotte, J. P., Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization. Biochimica et Biophysica Acta (BBA)-Biomembranes 2004, 1664, 161-171.
    50. Konno, Y.; Naito, N.; Yoshimura, A.; Aramaki, K., A study on the formation of liquid ordered phase in lysophospholipid/cholesterol/1, 3-butanediol/water and lysophospholipid/ceramide/1, 3-butanediol/water systems. Journal of Oleo Science 2014, 63, 823-828.
    51. Krause, M. R.; Wang, M.; Mydock-McGrane, L.; Covey, D. F.; Tejada, E.; Almeida, P. F.; Regen, S. L., Eliminating the roughness in cholesterol’s β-face: does it matter? Langmuir 2014, 30, 12114-12118.
    52. Krivanek, R.; Okoro, L.; Winter, R., Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. Biophysical Journal 2008, 94, 3538-3548.
    53. Lönnfors, M.; Engberg, O.; Peterson, B. R.; Slotte, J. P., Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes. Langmuir 2011, 28, 648-655.
    54. Malcolmson, R.; Higinbotham, J.; Beswick, P.; Privat, P.; Saunier, L., DSC of DMPC liposomes containing low concentrations of cholesteryl esters or cholesterol. Journal of Membrane Science 1997, 123, 243-253.
    55. Mannock, D. A.; Lee, M. Y.; Lewis, R. N.; McElhaney, R. N., Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2008, 1778, 2191-2202.
    56. Mannock, D. A.; Lewis, R. N.; McElhaney, R. N., A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2010, 1798, 376-388.
    57. McMullen, T. P.; Lewis, R. N.; McElhaney, R. N., Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. Biophysical Journal 2000, 79, 2056-2065.
    58. McMullen, T. P.; Lewis, R. N.; McElhaney, R. N., Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2009, 1788, 345-357.
    59. Silva, C.; Aranda, F. J.; Ortiz, A.; Martínez, V.; Carvajal, M.; Teruel, J. A., Molecular aspects of the interaction between plants sterols and DPPC bilayers: an experimental and theoretical approach. Journal of Colloid and Interface Science 2011, 358, 192-201.
    60. Stillwell, W.; Dallman, T.; Dumaual, A. C.; Crump, F. T.; Jenski, L. J., Cholesterol versus α-tocopherol: Effects on properties of bilayers made from heteroacid phosphatidylcholines. Biochemistry 1996, 35, 13353-13362.
    61. Zhao, L.; Feng, S.-S.; Kocherginsky, N.; Kostetski, I., DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane. International Journal of Pharmaceutics 2007, 338, 258-266.
    62. Alenaizi, R.; Radiman, S.; Rahman, I. A.; Mohamed, F., Zwitterionic betaine transition from micelles to vesicles induced by cholesterol. Journal of Molecular Liquids 2016, 223, 1226-1233.
    63. Bhattacharya, S.; Haldar, S., The effects of cholesterol inclusion on the vesicular membranes of cationic lipids. Biochimica et Biophysica Acta (BBA)-Biomembranes 1996, 1283, 21-30.
    64. Bhattacharya, S.; Haldar, S., Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage. Biochimica et Biophysica Acta (BBA)-Biomembranes 2000, 1467, 39-53.
    65. Bui, T. T.; Suga, K.; Umakoshi, H., Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems. Langmuir 2016, 32, 6176-6184.
    66. Daly, T. A.; Wang, M.; Regen, S. L., The origin of cholesterol’s condensing effect. Langmuir 2011, 27, 2159-2161.
    67. Krause, M. R.; Turkyilmaz, S.; Regen, S. L., Surface occupancy plays a major role in cholesterol’s condensing effect. Langmuir 2013, 29, 10303-10306.
    68. Fournier, I.; Barwicz, J.; Auger, M.; Tancrède, P., The chain conformational order of ergosterol-or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: a FTIR study. Chemistry and Physics of Lipids 2008, 151, 41-50.
    69. Severcan, F.; Baykal, Ü.; Süzer, Ş., FTIR studies of vitamin E-cholesterol-DPPC membrane interactions in CH2 region. Fresenius' Journal of Analytical Chemistry 1996, 355, 415-417.
    70. Berkowitz, M. L., Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochimica et Biophysica Acta (BBA)-Biomembranes 2009, 1788, 86-96.
    71. Smondyrev, A. M.; Berkowitz, M. L., Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol. Biophysical Journal 2001, 80, 1649-1658.
    72. Yang, J.; Martí, J.; Calero, C., Pair interactions among ternary DPPC/POPC/cholesterol mixtures in liquid-ordered and liquid-disordered phases. Soft Matter 2016, 12, 4557-4561.
    73. de Meyer, F.; Smit, B., Effect of cholesterol on the structure of a phospholipid bilayer. Proceedings of the National Academy of Sciences 2009, 106, 3654-3658.
    74. Lopez-Pinto, J.; Gonzalez-Rodriguez, M.; Rabasco, A., Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. International Journal of Pharmaceutics 2005, 298, 1-12.
    75. Elsayed, M. M.; Abdallah, O.; Naggar, V.; Khalafallah, N., Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen. Die Pharmazie-An International Journal of Pharmaceutical Sciences 2007, 62, 133-137.
    76. Bendas, E. R.; Tadros, M. I., Enhanced transdermal delivery of salbutamol sulfate via ethosomes. Aaps Pharmscitech 2007, 8, 213-220.
    77. Dubey, V.; Mishra, D.; Dutta, T.; Nahar, M.; Saraf, D.; Jain, N., Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. Journal of Controlled Release 2007, 123, 148-154.
    78. Chourasia, M. K.; Kang, L.; Chan, S. Y., Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results in Pharma Sciences 2011, 1, 60-67.
    79. Begum, M. Y.; Shaik, M. R.; Abbulu, K.; Sudhakar, M., Ketorolac tromethamine loaded liposomes of long alkyl chain lipids: Development, characterization and in vitro performance. International Journal of Pharm Tech research 2012, 4, 218-225.
    80. Maheshwari, R. G.; Tekade, R. K.; Sharma, P. A.; Darwhekar, G.; Tyagi, A.; Patel, R. P.; Jain, D. K., Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi Pharmaceutical Journal 2012, 20, 161-170.
    81. Sammour, O. A.; Mahdy, M. A.; Elnahas, H. M.; Mowafy, A. A., Liposomal gel as ocular delivery system for diclofenac sodium: in-vitro and in-vivo studies. International Journal of Pharmaceutical Sciences and Research 2013, 4, 215.
    82. PatHaN, I. B.; NaNDure, H.; SyeD, S. M.; Baıragı, S., Transdermal delivery of ethosomes as a novel vesicular carrier for paroxetine hydrochloride: In vitro evaluation and In vivo study. 2016.
    83. Michl, J.; Thulstrup, E. W., Spectroscopy with polarized light: solute alignment by photoselection, in liquid crystals, polymers, and membranes. VCH: 1986.
    84. Valeur, B.; Berberan-Santos, M. N., Molecular fluorescence: principles and applications. John Wiley & Sons: 2012.
    85. Vincent, M.; De Foresta, B.; Gallay, J.; Alfsen, A., Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents. Biochemistry 1982, 21, 708-716.
    86. Lakowicz, J. R.; Masters, B. R., Principles of fluorescence spectroscopy. Journal of Biomedical Optics 2008, 13, 029901.
    87. Wei, R.; Huang, Y.; Li, S.; Qi, C., Fluorescence polarization used to derive cell membrane fluidity during photodynamic therapy. Spectroscopy and Spectral Analysis 2005, 25, 1827-1829.
    88. FL WinLab v4.00 for LS-45/5550B-螢光光譜儀操作手冊.
    89. Fluorescence polarization-technical resource guide, 4th Ed. Invitrogen 2006.
    90. Ahumada, M.; Calderon, C.; LISSIE, A., Temperature dependence of bilayer properties in liposomes and the use of fluorescent probes as a tool to elucidate the permeation mechanism of hydrophilic solutes. Journal of the Chilean Chemical Society 2016, 61, 3052-3054.
    91. Harris, R. A.; Burnett, R.; McQuilkin, S.; McClard, A.; Simon, F. R., Effects of ethanol on membrane order: fluorescence studies. Annals of the New York Academy of Sciences 1987, 492, 125-135.
    92. Dupuy, B.; Montagu, M., Spectral properties of a fluorescent probe, all-trans-1, 6-diphenyl-1, 3, 5-hexatriene. Solvent and temperature effects. Analyst 1997, 122, 783-786.
    93. Lieberman, H. A.; Rieger, M. M.; Banker, G. S., Pharmaceutical Dosage Forms--Disperse Systems. M. Dekker: 1998; Vol. 2.

    下載圖示 校內:2019-07-31公開
    校外:2019-07-31公開
    QR CODE