| 研究生: |
賴暄澔 Lai, Hsuan-Hao |
|---|---|
| 論文名稱: |
含鎂添加之SS400低碳鋼中介在物之高溫臨場研究 In-situ Study of Inclusions Behavior in SS400 with Magnesium Addition at High Temperature |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 低碳鋼 、鎂含量 、高溫共軛焦雷射顯微鏡 、介在物釘紮力 、晶界遷移率 |
| 外文關鍵詞: | Low carbon steel, Magnesium content, High temperature confocal laser scanning microscope, Pinning effect, Grain growth mobility |
| 相關次數: | 點閱:127 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
添加鎂於低碳鋼SS400中,所形成之介在物可有效抑止沃斯田鐵晶粒成長,本研究探討介在物在高溫下對沃斯田鐵晶界釘紮之效力,藉由高溫共軛焦雷射掃描顯微鏡臨場觀察並研究高溫下介在物與晶界間之交互作用。
針對SS400鋼中介在物進行EDS成分分析,並藉由EBSD菊池線鑑定介在物結構,結果發現複合型介在物比例較非複合型高,並透過Factsage模擬介在物之生成過程。另外根據SEM的結果,MgO或MgO∙Al2O3通常位於中心,而MnS通常在外側,推測MnS會於MgO或MgO∙Al2O3介在物上異質成核。
本實驗使用高溫共軛焦雷射掃描顯微鏡將試片持溫於1250℃,持溫時間10分鐘,透過即時影像計算單位時間內晶界移動量、沃斯田鐵晶粒尺寸等數值,求得晶粒成長速率、晶粒成長驅動力及晶界遷移率。最後藉由比較晶界遷移率得知MgO介在物釘紮力最佳,MgO∙Al2O3-MnS次之,MgO-MnS第三,MnS最差。
The formation of inclusion in low carbon steel SS400 with Magnesium addition can inhibit austenite grain growth efficiently. In this study, we discussed the pinning effect on austenite grain boundary by inclusions at high temperature.
The chemical composition of inclusions was analyzed by SEM-EDS, and then, the identification of inclusions by Kikuchi pattern was obtained by EBSD. And with the help of high temperature confocal laser scanning microscope(HT-CLSM), we investigated and observed the in-situ interaction process between grain boundary and inclusions.
Grain growth velocity, grain growth driving force, and grain growth mobility were calculated by in-situ images. Finally, the grain growth mobility of inclusions was compared. By calculating grain growth mobility, it was found that MgO has the best pinning effect on grain growth, MgO∙Al2O3 is second, MgO-MnS complex is third, and MnS is the worst.
1. Miki, C., Homma, K. and Tominaga, T., High strength and high performance steels and their use in bridge structures. Journal of Constructional Steel Research, 2002. 58: p. 3-4.
2. Bhadeshia, H. and Honeycombe, R., Steels: microstructure and properties. 2017: Butterworth-Heinemann.
3. Ogibayashi, S., Advances in technology of oxide metallurgy. Nippon Steel Tech. Rep.(Japan), 1994: p. 70-76.
4. 黃文星 and 付建勛, 鋼鐵冶煉之二次精煉與氧化物冶金. 2012: 合記圖書出版社.
5. 羅新傑, 結構用鋼胚中介在物之研究 . 成功大學材料科學及工程學系碩士論文, 2012: p. 7-32.
6. Yang, J., Zhu, K., Wang, R. and Sheng, J., Improving the toughness of heat affected zone of steel plate by use of fine inclusion particles. steel research international, 2011. 82(5): p. 552-556.
7. Guo, L., Roelofs, H., Lembke, M.I. and Bhadeshia, H.K.D.H., Effect of manganese sulphide particle shape on the pinning of grain boundary. Materials Science and Technology, 2017. 33(8): p. 1013-1018.
8. Cao, H., Min, J.Y., Wu, S.D., Xian, A.P. and Shang, J.K., Pinning of grain boundaries by second phase particles in equal-channel angularly pressed Cu–Fe–P alloy. Materials Science and Engineering: A, 2006. 431(1-2): p. 86-91.
9. Agnoli, A., Bernacki, M., Logé, R., Franchet, J.M., Laigo, J. and Bozzolo, N., Understanding and modeling of gain boundary pinning in Inconel718. in Superalloys 2012: The 12th International Symposium on Superalloys. 2012.
10. Vanherpe, L., Moelans, N., Blanpain, B. and Vandewalle, S., Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations. Computational Materials Science, 2010. 49(2): p. 340-343.
11. Martin, J.W., Precipitation hardening: theory and applications. 2012: Butterworth-Heinemann.
12. Babu, S.S., The mechanism of acicular ferrite in weld deposits. Current opinion in Solid state and Materials Science, 2004. 8(3-4): p. 267-278.
13. Nedjad, S.H., Moghaddam, Y.Z., Vazirabadi, A.M., Shirazi, H. and Ahmadabadi, M.N., Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C–Mn steels. Materials Science and Engineering: A, 2011. 528(3): p. 1521-1526.
14. Wang, Z., Shi, M., Tang S. and Wang G., Effect of heat input and MA constituent on microstructure evolution and mechanical properties of heat affected zone in low carbon steel. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017. 32(5): p. 1163-1170.
15. Wan, X., Zhou, B., Nune, K.C., Li, Y., Wu, K. and Li, G., In-situ microscopy study of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by TiN particle. Science and Technology of Welding and Joining, 2017. 22(4): p. 343-352.
16. KA, A., The influence of niobium microalloying on austenite grain coarsening behavior of Ti-modified SAE 8620 steel. ISIJ international, 2007. 47(2): p. 307-316.
17. Tomita, Y., Saito, N., Tsuzuki, T., Tokunaga, Y. and Okamoto, K., Improvement in HAZ toughness of steel by TiN-MnS addition. ISIJ International, 1994. 34(10): p. 829-835.
18. Okatsu, M., Oi, K., Ihara, K. and Hoshino, T., High strength linepipe with excellent HAZ toughness. in ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. 2004. American Society of Mechanical Engineers.
19. Suzuki, S., Ichimiya, K. and Akita, T., High tensile strength steel plates with excellent HAZ toughness for shipbuilding: JFE EWEL technology for excellent quality in HAZ of high heat input welded joints. JFE Tech. Rep, 2005. 5: p. 24-29.
20. Omata, K., Yoshimura, H. and Yamamoto, S., The leading high performance steel plates with advanced manufacturing technologies. NKK TECHNICAL REPORT-JAPANESE EDITION-, 2002: p. 57-62.
21. Kojima, A., Klyose, A., Uemori, R., Minagawa, M., Hoshino, M., Nakashima, T., Ishida, K. and Yasui, H., Super high HAZ toughness technology with fine microstructure imparted by fine particles. Shinnittetsu Giho, 2004: p. 2-5.
22. Kimura, S., Nakajima, K. and Mizoguchi, S., Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels. Metallurgical and Materials Transactions B, 2001. 32(1): p. 79-85.
23. Kimura, S., Nabeshima, Y., Nakajima, K. and Mizoguchi, S., Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels. Metallurgical and Materials Transactions B, 2000. 31(5): p. 1013-1021.
24. Sahai, Y. and Emi, T., Tundish technology for clean steel production. 2008: World Scientific.
25. Ånmark, N., Karasev, A. and Jönsson, P.G. The effect of different non-metallic inclusions on the machinability of steels. Materials, 2015. 8(2): p. 751-783.
26. Fairchild, D., Howden, D. and Clark, W., The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage. Metallurgical and Materials Transactions A, 2000. 31(3): p. 641-652.
27. Suito, H., Ohta, H., and Morioka, S., Refinement of solidification microstructure and austenite grain by fine inclusion particles. ISIJ international, 2006. 46(6): p. 840-846.
28. 陳美璇, 鎂含量對低碳鋼於高溫沃斯田鐵化過程中晶粒粗化之影響. 成功大學材料科學及工程學系碩士論文,2015.
29. 马立波, 微合金元素镁的氧化物冶金作用机理研究., 华北理工大学, 2017.
30. Bor, H., Chao, C. and Ma, C. The effects of Mg microaddition on the mechanical behavior and fracture mechanism of MAR-M247 superalloy at elevated temperatures. Metallurgical and Materials Transactions A, 1999. 30(3): p. 551-561.
31. Zhou, D., Fu, J., Li, J., Chen, X. and Zheng, J., Study on control and effect of magnesium in bearing steel. Iron and Steel(China)(China), 2002. 37(7): p. 23-25.
32. Saxena, S., Magnesium as Refining Agent for Steel. Clean Steel 3, 1986: p. 128-136.
33. Du, G., Li, J., Wnag, Z.B. and Shi, C.B., Effect of Magnesium Addition on Behavior of Collision and Agglomeration between Solid Inclusion Particles on H13 Steel Melts. steel research international, 2017. 88(3): p. 3-9.
34. Wu, Z., Li, J., Shi, C.B. and Wang, L.L. Effect of magnesium addition on inclusions in H13 die steel. International Journal of Minerals, Metallurgy, and Materials, 2014. 21(11): p. 1062-1067.
35. Li, X.-b., Min, Y., Yu, Z., Liu, C.J. and Jiang M.F., Effect of Mg addition on nucleation of intra-granular acicular ferrite in Al-killed low carbon steel. Journal of Iron and Steel Research, International, 2016. 23(5): p. 415-421.
36. Zhang, J., Feng, P.H., Pan, Y.C., Hwang, W.S., Su, Y.H. amd Lu, M.J., Effects of Heat Treatment on the Microstructure and Mechanical Properties of Low-Carbon Steel with Magnesium-Based Inclusions. Metallurgical and Materials Transactions A, 2016. 47(10): p. 5049-5057.
37. Hui, K., Zhou, Y., Lin, H., Xia, Y., Li, J., Yue, Q. and Cai, Z.Y., The mechanism of intragranular acicular ferrite nucleation induced by Mg-Al-O inclusions. Advances in Materials Science and Engineering, 2015. 2015.
38. Park, J.H. and Todoroki, H., Control of MgO· Al2O3 spinel inclusions in stainless steels. ISIJ international, 2010. 50(10): p. 1333-1346.
39. Jo, S.-K., Kim, S.-H. and Song,B., Thermodynamics on the formation of spinel (MgO· Al 2 O 3) inclusion in liquid iron containing chromium. Metallurgical and Materials Transactions B, 2002. 33(5): p. 703-709.
40. 江原靖弘 and 横.川. 肖英龙, SUS304 不锈钢中 MgO· Al2O3 尖晶石夹杂物生成机理. 世界钢铁, 2008. 8(001): p. 22-28.
41. Gottstein, G. and Shvindlerman, L.S., Grain boundary migration in metals: thermodynamics, kinetics, applications. 2009: CRC press.
42. 賴致廷, 鎂添加對 SS400 低碳鋼於高溫下沃斯田鐵晶粒成長之影響. 成功大學材料科學及工程學系碩士論文, 2017: p. 1-99.
43. Nes, E., Ryum, N. and Hunderi, O., On the Zener drag. Acta Metallurgica, 1985. 33(1): p. 11-22.
44. Humphreys, F.J. and Hatherly, M., Recrystallization and related annealing phenomena. 2012: Elsevier.
45. Lücke, K. and Gottstein, G., Grain boundary motion—I. Theory of vacancy production and vacancy drag during grain boundary motion. Acta Metallurgica, 1981. 29(5): p. 779-789.
46. Lücke, K. and Stüwe, H., On the theory of impurity controlled grain boundary motion. Acta metallurgica, 1971. 19(10): p. 1087-1099.
47. Hersent, E., Marthinsen, K. and Nes, E., The effect of solute atoms on grain boundary migration: A solute pinning approach. Metallurgical and Materials Transactions A, 2013. 44(7): p. 3364-3375.
48. Fujiyama, N., Nishibata, T., Seki, A., Hirata, H., Kojima, K. and Ogawa, K., Austenite grain growth simulation considering the solute-drag effect and pinning effect. Science and Technology of advanced MaTerialS, 2017. 18(1): p. 88-95.
49. 黃琲雅, 探討熱機過程中硫化錳的形貌分析與變形行為. 成功大學材料科學及工程學系碩士論文, 2016: p. 42-47.
50. Vynokur, B., Influence of alloying on the free energy of austenitic grain boundaries in steel. Materials Science, 1996. 32(2): p. 144-157.
51. Shahandeh, S. and Militzer, M., Grain boundary curvature and grain growth kinetics with particle pinning. Philosophical Magazine, 2013. 93(24): p. 3231-3247.
52. Moelans, N., Blanpain, B. and Wollants, P., Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles. Acta Materialia, 2006. 54(4): p. 1175-1184.
53. Birn-Jeffery, A.V., Miller, C.E., Naish, D., Rayfield, E.J., Hone, D.W., Pedal claw curvature in birds, lizards and Mesozoic dinosaurs–complicated categories and compensating for mass-specific and phylogenetic control. PLoS One, 2012. 7(12): p. e50555.
54. Takeuchi, E. and Brimacombe, J., Effect of oscillation-mark formation on the surface quality of continuously cast steel slabs. Metallurgical Transactions B, 1985. 16(3): p. 605-625.
55. Saylor, D.M. and Rohrer, G.S., Measuring the Influence of Grain‐Boundary Misorientation on Thermal Groove Geometry in Ceramic Polycrystals. Journal of the American Ceramic Society, 1999. 82(6): p. 1529-1536.
56. Schuh, C.A., Anderson, K. and Orme, C., Rapid assessment of anisotropic surface processes: experiments on the corrosion of Inconel 600. Surface science, 2003. 544(2-3): p. 183-192.
57. Wang, S. and Wang, J., Effect of grain orientation on the corrosion behavior of polycrystalline Alloy 690. Corrosion Science, 2014. 85: p. 183-192.
58. Marinelli, M.C., Moscato, M.G., Signorelli, J.W., Bartali, A.E. and Alvarez-Armas, I., KS relationship identification technique by EBSD. in Key Engineering Materials. 2011. Trans Tech Publ.
59. Baik, Y.-J. and Yoon, D.N., The effect of curvature on the grain boundary migration induced by diffusional coherency strain in Mo-Ni alloy. Acta Metallurgica, 1987. 35(9): p. 2265-2271.
校內:2021-09-01公開