簡易檢索 / 詳目顯示

研究生: 陳品任
Chen, Pin-Ren
論文名稱: 魚類群落水生植物棲地使用及地表逕流與伏流水交換的水質空間變異
Aquatic Vegetation Habitat Use of Fish Assemblage and Spatial Variations in Water Quality of Surface-Hyporheic Water Exchange
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 伏流水魚類群落與水生植物水質空間變異適合度曲線
外文關鍵詞: Hyporheic Zone, Fish Assemblages and Aquatic Vegetation, Spatial Variations in Water Quality, Habitat Suitability Index
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究於屏東縣萬巒鄉五溝水流域,選擇三個河段進行魚類生態調查,分別是一號水門區、屋背溝區、親水階梯與竹林區。探討五溝水常見魚種棲地偏好,使用適合度曲線計算台灣石賓、粗首馬口鱲、半紋小鲃、短吻紅斑吻鰕虎、台灣鬚鱲與橘尾窄口鲃等 6 種魚種流速、水深、底質粒徑大小之棲地偏好,並利用排序分析探討三個河段物種組成與環境變量的關聯性,使用複迴歸分析檢驗個別魚種與環境變量之相關性,並探討魚類群落水生植物棲地使用,分析其在水生植物有無以及原生或外來水生植物之棲地偏好。
    本研究分析魚類群落之水生植物棲地使用情形,台灣石賓、粗首馬口鱲與橘尾窄口鲃偏好沒有水生植物之棲地,台灣鬚鱲偏好無水生植物之棲地些微大於有水生植物之棲地,半紋小鲃與短吻紅斑吻鰕虎則偏好有水生植物之棲地;台灣石賓、粗首馬口鱲、半紋小鲃、台灣鬚鱲與橘尾窄口鲃偏好外來水生植物之棲地大於原生水生植物之棲地,短吻紅斑吻鰕虎則明顯偏好原生水生植物之棲地條件。在一號水門區設置水草復育區後,短吻紅斑吻鰕虎個體數有大幅度的增長,顯示種植原生水生植物對於短吻紅斑吻鰕虎物種之保育可能具有正面效益。
    本研究分析地表逕流與伏流水交換的水質空間變異,三個區域同為上湧段、平衡段與下滲段的水質均存在差異,相較於地表逕流與伏流水交互作用,周圍環境的不同造成水質的差異程度更為強烈。本研究分析同一河段地表逕流與伏流水交換上湧段、平衡段與下滲段水質差異,發現水質均無顯著差異,水溫均以下滲段高於上湧段,溶氧以下滲段大於上湧段。

    In this study, we selected three river segments in Wu-Gou-Shui, including First Water Gate, Wubeigou Zone, Water Park and Bamboo Zone. Through fish sampling and habitat suitability index, we determined the fish community structure and the habitat preferences of common fishes in Wu-Gou-Shui. We tested the relationships between fish assemblages and environmental variables by ordination analysis and multiple regression analysis. We took aquatic vegetation habitat use into account and compared the occurrence probability of common fishes in aquatic vegetation habitat. We found that the occurrence probability of Puntius semifasciolatus and Rhinogobius rubromaculatus in the habitat with aquatic vegetation was higher than without aquatic vegetation. The occurrence probability of Rhinogobius rubromaculatus in the habitat with native aquatic vegetation was higher than with exotic aquatic vegetation. After the establishment of aquatic vegetation restoration area in First Water Gate, the number of Rhinogobius rubromaculatus increased largely. It might be meaningful for planting aquatic vegetation to Rhinogobius rubromaculatus conservation. We investigated the spatial variations in water quality of surface-hyporheic water exchange in First Water Gate, Wubeigou Zone and Water Park and Bamboo Zone. There were significant differences in water quality between different river segments in the same exchange mechanism. There were nonsignificant differences in water quality between upwelling zones, equilibrium zones and downwelling zones in the same segment. Our results indicated that the difference caused by environmental heterogeneity is more significant than by surface-hyporheic exchange. Water temperature and dissolved oxygen at downwelling zones were higher than at upwelling zones.

    摘要 I Extended Abstract II 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XII 第1章 前言 1 1.1 研究動機與目的 1 1.2 論文架構 3 第2章 文獻回顧 4 2.1 伏流水定義 4 2.2 水質差異比較 6 2.3 棲地環境變量與魚類之關聯性 9 2.4 水生植物作為魚類棲地選擇 11 2.5 魚類棲息地適合度指數 12 第3章 研究方法 14 3.1 研究區域 14 3.2 採樣日程 17 3.3 採樣方法 19 3.3.1 魚類採樣 19 3.3.2 棲地環境變量量測 21 3.3.3 微測壓管之應用 23 3.4 數據統計分析 26 3.4.1 平均數檢定與無母數檢定 26 3.4.2 排序分析 28 3.4.3 蒙地卡羅置換檢驗 30 3.4.4 適合度曲線 31 3.4.5 複迴歸分析 32 第4章 結果與討論 33 4.1 水質差異分析 33 4.1.1 地表逕流水質差異 33 4.1.2 地表逕流與伏流水水質差異 39 4.1.3 地表逕流與伏流水水質交換的空間變異 43 4.2 魚種組成 52 4.3 棲地偏好分析 55 4.3.1 物理棲地變量 55 4.3.2 魚種棲地偏好 57 4.3.3 魚類群落與環境變量之關聯性 62 4.3.4 複迴歸分析 67 4.4 水生植物棲地使用 68 第5章 結論與建議 77 5.1 結論 77 5.2 建議 80 第6章 參考文獻 81 附錄 88 附錄1. 電氣法採樣許可公文 88

    Allan, J. D., & Flecker, A. S. Biodiversity conservation in running waters. BioScience, 43(1), 32-43. (1993).
    Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. Flow and storage in groundwater systems. science, 296(5575), 1985-1990. (2002).
    Bain, M. B., Finn, J. T., & Booke, H. E. A quantitative method for sampling riverine microhabitats by electrofishing. North American Journal of Fisheries Management, 5(3B), 489-493. (1985).
    Baxter, C., Hauer, F. R., & Woessner, W. W. Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. (2003).
    Berryman, A. A., & Hawkins, B. A. The refuge as an integrating concept in ecology and evolution. Oikos, 115(1), 192-196. (2006).
    Billman, E. J., Kreitzer, J. D., Creighton, J. C., Habit, E., McMillan, B., & Belk, M. C. Habitat enhancement and native fish conservation: can enhancement of channel complexity promote the coexistence of native and introduced fishes? Environmental Biology of Fishes, 96(4), 555-566. (2013).
    Bovee, K. D. A guide to stream habitat analysis using the instream flow incremental methodology (Vol. 1): Western Energy and Land Use Team, Office of Biological Services, Fish and …. (1982).
    Bovee, K. D. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology: National Ecology Center, Division of Wildlife and Contaminant Research, Fish …. (1986).
    Bovee, K. D., Milhous, R. T., & Turow, J. Hydraulic simulation in instream flow studies: theory and techniques: Department of the Interior, Fish and Wildlife Service, Office of Biological …. (1978).
    Carpentier, A., Paillisson, J.-M., Feunteun, E., & Marion, L. Fish community structure in temporary lowland flooded grasslands. Bulletin Français de la Pêche et de la Pisciculture(375), 1-14. (2004).
    Colzi, I., Lastrucci, L., Rangoni, M., Coppi, A., & Gonnelli, C. Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? Journal of environmental management, 213, 320-328. (2018).
    Costa, M. R. d., Mattos, T. M., Borges, J. L., & Araújo, F. G. Habitat preferences of common native fishes in a tropical river in Southeastern Brazil. Neotropical Ichthyology, 11, 871-880. (2013).
    Cucherousset, J., Carpentier, A., & Paillisson, J. M. Selective use and spatial distribution of native and non‐native fish in wetland habitats. River research and applications, 24(9), 1240-1250. (2008).
    Dennison, W. C., Orth, R. J., Moore, K. A., Stevenson, J. C., Carter, V., Kollar, S., Bergstrom, P. W., & Batiuk, R. A.Assessing water quality with submersed aquatic vegetation. BioScience, 43(2), 86-94. (1993).
    Diamond, J. M. Ecology: Laboratory, field and natural experiments. Nature, 304(5927), 586-587. (1983).
    Dibble, E. D., & Harrel, S. Largemouth bass diets in two aquatic plant communities. Journal of Aquatic Plant Management, 35, 74-78. (1997).
    Fowler, R. T., & Scarsbrook, M. R. Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel‐bed rivers. New Zealand Journal of Marine and Freshwater Research, 36(3), 471-482. (2002).
    Franken, R. J., Storey, R. G., & Dudley Williams, D. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia, 444(1), 183-195. (2001).
    Gandy, C., Smith, J., & Jarvis, A. Attenuation of mining-derived pollutants in the hyporheic zone: a review. Science of the Total Environment, 373(2-3), 435-446. (2007).
    Guo, C., Li, W., Li, S., Mai, Z., Zhang, T., Liu, J., Hansen, A. G., Li, L., Cai, X., & Hicks, B. J. Manipulation of fish community structure effectively restores submerged aquatic vegetation in a shallow subtropical lake. Environmental Pollution, 292, 118459. (2022).
    Guo, D., Zhou, L., Wang, G., Lai, H., Bi, S., Chen, X., Zhao, X., Liu, S., Luo, Y., & Li, G. Use of artificial structures to enhance fish diversity in the Youjiang River, a dammed river of the Pearl River in China. Ecology and Evolution, 10(23), 13439-13450. (2020).
    Hübner, D., Gerke, M., Fricke, R., Schneider, J., & Winkelmann, C. Cypriniform fish in running waters reduce hyporheic oxygen depletion in a eutrophic river. Freshwater Biology, 65(9), 1518-1528. (2020).
    Hancock, P. J., & Boulton, A. J. The effects of an environmental flow release on water quality in the hyporheic zone of the Hunter River, Australia. Hydrobiologia, 552(1), 75-85. (2005).
    Heggenes, J., Bremset, G., & Brabrand, Å. Visiting the hyporheic zone: young A tlantic salmon move through the substratum. Freshwater Biology, 58(8), 1720-1728. (2013).
    Hill, M. O., & Gauch, H. G. Detrended correspondence analysis: an improved ordination technique Classification and ordination (pp. 47-58): Springer. (1980)
    Kawanishi, R., Inoue, M., Dohi, R., Fujii, A., & Miyake, Y. The role of the hyporheic zone for a benthic fish in an intermittent river: a refuge, not a graveyard. Aquatic Sciences, 75(3), 425-431. (2013).
    Knighton, D. Fluvial forms and processes: a new perspective: Routledge. (2014).
    Lévêque, C. Biodiversity dynamics and conservation: the freshwater fish of tropical Africa: Cambridge University Press. (1997).
    Lake, P. S. Disturbance, patchiness, and diversity in streams. Journal of the north american Benthological society, 19(4), 573-592. (2000).
    Lazzari, M., & Stone, B. Use of submerged aquatic vegetation as habitat by young-of-the-year epibenthic fishes in shallow Maine nearshore waters. Estuarine, Coastal and Shelf Science, 69(3-4), 591-606. (2006).
    Legendre, P., & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271-280. (2001).
    Lepš, J., & Šmilauer, P. Multivariate analysis of ecological data using CANOCO: Cambridge university press. (2003).
    Liermann, C. R., Nilsson, C., Robertson, J., & Ng, R. Y. Implications of dam obstruction for global freshwater fish diversity. BioScience, 62(6), 539-548. (2012).
    Looby, A., Reynolds, L. K., Adams, C. R., Walsh, S. J., & Martin, C. W. Submerged aquatic vegetation habitat use of age-0 Florida bass Micropterus floridanus. Environmental Biology of Fishes, 104(8), 947-958. (2021).
    Madsen, J. D. Biomass techniques for monitoring and assessing control of aquatic vegetation. Lake and Reservoir Management, 7(2), 141-154. (1993).
    Marmonier, P., Vervier, P., Giber, J., & Dole-Olivier, M.-J. Biodiversity in ground waters. Trends in Ecology & Evolution, 8(11), 392-395. (1993).
    Massicotte, P., Bertolo, A., Brodeur, P., Hudon, C., Mingelbier, M., & Magnan, P. Influence of the aquatic vegetation landscape on larval fish abundance. Journal of Great Lakes Research, 41(3), 873-880. (2015).
    Mattingly, H. T., & Galat, D. L. Distributional patterns of the threatened Niangua darter, Etheostoma nianguae, at three spatial scales, with implications for species conservation. Copeia, 2002(3), 573-585. (2002).
    Miranda, L., & Killgore, K. Fish depth distributions in the Lower Mississippi River. River Research and Applications, 30(3), 347-359. (2014).
    Moorman, M. C., Augspurger, T., Stanton, J. D., & Smith, A. Where's the grass? disappearing submerged aquatic vegetation and declining water quality in lake mattamuskeet. Journal of Fish and Wildlife Management, 8(2), 401-417. (2017).
    Olsen, D. A., & Townsend, C. R. Hyporheic community composition in a gravel‐bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biology, 48(8), 1363-1378. (2003).
    Orghidan, T. Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch. Hydrobiol, 55(3), 392-414. (1959).
    Orghidan, T. A new habitat of subsurface waters: the hyporheic biotope. Fundamental and applied limnology, 176(4), 291. (2010).
    Orth, R. J., Wilcox, D. J., Whiting, J. R., Nagey, L. S., Kenne, A. K., & Smith, E. R. 2016 Distribution of Submerged Aquatic Vegetation in Chesapeake Bay and Coastal Bays: Virginia Institute of Marine Science, College of William and Mary. (2017).
    Pfauserová, N., Slavík, O., Horký, P., Turek, J., & Randák, T. Spatial distribution of native fish species in tributaries is altered by the dispersal of non-native species from reservoirs. Science of The Total Environment, 755, 143108. (2021).
    Platts, W. S., Megahan, W. F., & Minshall, G. W. Methods for evaluating stream, riparian, and biotic conditions (Vol. 138): US Department of Agriculture, Forest Service, Intermountain Forest and Range …. (1982).
    Poff, N. L., & Ward, J. V. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian journal of fisheries and aquatic sciences, 46(10), 1805-1818. (1989).
    Richardson, D. M., Pyšek, P., & Carlton, J. T. A compendium of essential concepts and terminology in invasion ecology. Fifty years of invasion ecology: the legacy of Charles Elton, 1, 409-420. (2011).
    Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59(1), 25-36. (2015).
    Schaefer, J. F., Clark, S. R., & Warren Jr, M. L. Diversity and stability in Mississippi stream fish assemblages. Freshwater Science, 31(3), 882-894. (2012).
    Sedell, J. R., Reeves, G. H., Hauer, F. R., Stanford, J. A., & Hawkins, C. P. Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems. Environmental management, 14(5), 711-724. (1990).
    Soulé, M. E. Conservation: tactics for a constant crisis. Science, 253(5021), 744-750. (1991).
    Souza, F. A., Dziedzic, M., Cubas, S. A., & Maranho, L. T. Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc., Haloragaceae. Journal of environmental management, 120, 5-9. (2013).
    Stanley, E. H., & Boulton, A. J. Hyporheic processes during flooding and drying in a Sonoran Desert stream. I. Hydrologic and chemical dynamics. Archiv für Hydrobiologie, 1-26. (1995).
    Statzner, B., Gore, J. A., & Resh, V. H. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American benthological society, 7(4), 307-360. (1988).
    Valett, H. M., Fisher, S. G., & Stanley, E. H. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. Journal of the North American Benthological Society, 9(3), 201-215. (1990).
    Vardakas, L., Kalogianni, E., Zogaris, S., Koutsikos, N., Vavalidis, T., Koutsoubas, D., & Skoulikidis, N. T. Distribution patterns of fish assemblages in an Eastern Mediterranean intermittent river. Knowledge and Management of Aquatic Ecosystems(416), 30. (2015).
    Vervier, P., Gibert, J., Marmonier, P., & Dole-Olivier, M.-J. A perspective on the permeability of the surface freshwater-groundwater ecotone. Journal of the North American Benthological Society, 11(1), 93-102. (1992).
    White, D. S. Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 12(1), 61-69. (1993).
    Wootton, R. J. Fish ecology: Springer Science & Business Media. (1991).
    Wu, L., Gomez-Velez, J. D., Krause, S., Wörman, A., Singh, T., Nützmann, G., & Lewandowski, J. How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange. Hydrology and Earth System Sciences, 25(4), 1905-1921. (2021).
    Wyatt, K. H., Hauer, F. R., & Pessoney, G. F. Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia, 607(1), 151-161. (2008).
    Yang, C.-h., Tseng, T.-J., Lin, R. S., Tzeng, C.-S., & Liao, T.-Y. The Red Lists of Freshwater Fishes of Taiwan. (2017).
    Zampella, R. A., Procopio, N. A., Lathrop, R. G., & Dow, C. L. Relationship of Land‐Use/Land‐Cover Patterns and Surface‐Water Quality in The Mullica River Basin 1. JAWRA Journal of the American Water Resources Association, 43(3), 594-604. (2007).
    Zhang, Y., Jeppesen, E., Liu, X., Qin, B., Shi, K., Zhou, Y., Thomaz, S., Magela, & Deng, J. Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 173, 259-265. (2017).
    孔麒源、戴永禔. 屏東縣萬安溪台灣石魚賓 (Acrossocheilus paradoxus) 之棲地利用. Bio Formosa, 41(2), 103-112. (2006).
    尤仁弘. 緊急抗旱伏流水開發與利用. 水資源管理會刊, 23(1). (2021).
    王士榮. 濁水溪流域地下水資源開發與管理. 臺灣水利, 67(1), 43-67. (2019).
    呂映昇. 物理環境因子與魚類棲地喜好度之關係-多變量分析之應用。. 國立成功大學水利及海洋工程學系碩士論文, 台南市。取自 https://hdl.handle.net/11296/7mbb26 (2009).
    李鎮宇. 基於功能特徵方法評估渠道化工程對魚類群落的影響. 國立成功大學水利及海洋工程學系碩士論文, 台南市。取自 https://hdl.handle.net/11296/6778j7 (2019).
    周銘泰、高瑞卿. 台灣淡水及河口魚圖鑑 (Vol. 18): 晨星出版. (2011).
    林宏奕、龔文瑞、李振誥. 應用地下水水位水溫資料評估伏流水潛能河段之研究-以八掌溪為例. 大地技師(19), 59-65. (2019).
    林信輝、黃朝慶、陳建男、林鑑澄、江政人. 水生植物手冊: 行政院農業委員會水土保持局. (2007).
    林馳源. 伏流水對地表逕流水質與魚類影響之研究. 國立成功大學水利及海洋工程學系碩士論文, 台南市。取自 https://hdl.handle.net/11296/w4f9g6 (2013).
    邱映軒. 魚類群聚與環境關聯性及伏流水與地表逕流交換分析. 國立成功大學水利及海洋工程學系碩士論文, 台南市。取自 https://hdl.handle.net/11296/6njkfh (2021).
    邵廣昭. (2022). 臺灣魚類資料庫 網路電子版. https://fishdb.sinica.edu.tw/
    柯宗佑. 底棲型鰕虎對天然及人造產卵點之選擇. 國立成功大學水利及海洋工程學系碩士論文, 台南市。取自 https://hdl.handle.net/11296/2s9659 (2016).
    曹静、苗艷明、馮飛、許強、張欽弟、華潤成. 稀有種不同處理對典範對應分析排序結果影響的比較. 植物生態學報, 39(2), 167. (2015).
    游志弘、孫建平. 河道伏流水特性及其對地表逕流水質之影響. 農業工程學報, 61(2), 47-60. (2015).
    楊遠波、顏聖紘、林仲剛. 台灣水生植物圖誌: 行政院農業委員會. (2001).
    葉柏緯. 伏流水對魚類棲地之影響─ 以五溝水湧泉濕地為例. 國立成功大學水利及海洋工程學系碩士論文, 台南市。取自 https://hdl.handle.net/11296/24e24e (2014).
    劉晉坤、邱郁文、黃大駿. 五溝濕地棲地營造及保育. (2019).
    鄭文吉. 漫談蒙地卡羅法的原理及其應用. 高雄區農業改良場研究彙報, 23(1), 26-41. (2013).
    賴弘智、翁紹儒、張端宗、蔡澄崇、施志昀. 條紋小鲃 Puntius semifasiolatus (Günther, 1868) 人工繁養殖及幼苗發育. 特有生物研究, 10(1), 35-44. (2008).

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE