| 研究生: |
林宗翰 Lin, Zong-Han |
|---|---|
| 論文名稱: |
水化矽酸鈣力學性質之模擬研究 MOLECULAR DYNAMICS SIMULATION OF CSH UNDER VARIOUS LOADING AND THERMAL CONDITIONS |
| 指導教授: |
王雲哲
Wang, Yun-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 分子動力學模擬 、水化矽酸鈣 、張力 、彎曲 、扭轉 、壓痕 、熱傳導係數 |
| 外文關鍵詞: | molecular dynamics simulation, C-S-H, tension, bending, torsion, indentation, coefficient of thermal conductivity |
| 相關次數: | 點閱:100 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以分子動力學模擬技術,研究選定之水化矽酸鈣(C-S-H)的機械與熱性質,所選定之C-S-H原子模型,其化學式為(CaO)1.60(SiO2)(H2O)1.63,密度約為2.32 g/cm3。分子動力學模擬所使用之原子間勢能函數為CSHFF,是一種新版本的ClayFF,採用庫倫靜電勢能函數為長程的交互作用力,蘭納-瓊斯勢函數為短程的交互作用力。我們將對C-S-H原子模型進行拉伸、壓縮、剪切、扭轉、彎曲、壓痕等模擬,以了解材料性質與微觀結構的關聯性。C-S-H在室溫下表現出明顯的層狀結構,但層狀結構在高溫下變得均勻不明顯,此現象表示熱能會對原子位置引起大幅的波動。在室溫下,我們計算出的Q1:Q2:Q3比例約為15:50:35,與文獻資料類似,在高溫時,Q1比例幾乎是固定的且最多數,Q2減少,Q0增加,這種Qn比例的變化將會顯著地影響C-S-H的機械性能。在拉伸,壓縮和剪切試驗中,我們發現層狀結構和氧化矽鏈會影響斷裂機制,另外在高溫下明顯損失其強度和韌性。根據我們的計算,扭轉試驗的最大剪切模數約為18.30 GPa,彎曲試驗的最大楊氏模數約為75.00 GPa。C-S-H在各個加載方向下具有1.5到2.5 GPa的極限拉伸應力。通過壓痕試驗,硬度約為7.33 GPa,壓痕模數約為64.19 GPa,透過Green-Kubo平衡法計算出的熱導率係數為10.852 W/mK。
In this research, we adopt the molecular dynamics simulation techniques to study the mechanical and thermal properties of the chosen C-S-H atomistic model. The chemical composition of the C-S-H model is (CaO)1.60(SiO2)(H2O)1.63, and its density is about 2.32 g/cm3. The interatomic potential is the CSHFF which is a new version of ClayFF, applying Coulombic electrostatic potential function as long-range interactions, and take Lennard-Jones potential function as shortrange interactions. Tension, compression, shear, torsion, bending, and indentation simulations were conducted to correlate properties with microstructures. The C-S-H model exhibits clear layered structure at room temperature, but the layered structure becomes more homogeneous at high temperature, indicating thermal energy causing large fluctuation in atom positions. At room temperature, our calculated Q1:Q2:Q3 ratio is about 15 : 50 : 35, consistent with literature data. At high temperature, Q1 is almost constant and dominant, Q2 decreases, and Q0 increases. This change in Q’s affects the mechanical properties of C-S-H significantly. In tensile, compressive, and shear tests, the layer structure and silicate chains affect fracture mechanisms. At high temperatures, the C-S-H loses its strength and toughness significantly. Based on our calculations, the largest shear modulus is about 18.30 GPa from the torsion test, and largest Young’s modulus is about 75.00 GPa from the bending test. The C-S-H exhibits ultimate tensile stresses between 1.5~2.5 GPa in responses to various loading directions. From indentation tests, the hardness is about 7.33 GPa and the indentation modulus is about 64.19 GPa. The calculated coefficient of thermal conductivity is 10.852 W/mK by the Green-Kubo equilibrium method.
[1] R. J.-M. Pellenq, A. Kushima, R. Shahsavari, K. J. Van Vliet, M. J. Buehler, S. Yip, and F.-J. Ulm. A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences, 106(38):16102–16107, 2009.
[2] R. Shahsavari. Hierarchical Modeling of Structure and Mechanics of Cement Hydrate. PhD thesis, Massachusetts Institute of Technology, February 2011.
[3] CONTINENTALCEMENT. Tetracalcium aluminoferrite. http://www.continentalcement.com/web/technical/uploads/Cement_Properties_and_Characteristics.pdf. [Online; accessed 5-May-2017].
[4] Alite(c3s). http://webmineral.com/data/Larnite.shtml#.V3sI0vl96Uk. [Online; accessed 5-May-2017].
[5] Wikipedia. Belite(c2s). https://en.wikipedia.org/wiki/Belite. [Online; accessed 5-May-2017].
[6] V. S. Ramachandran. Concrete Admixtures Handbook: Properties, Science, and Technology. Noyes Publications, USA, 1989.
[7] CementLab. C-s-h. http://www.cementlab.com/cement-art.htm. [Online; accessed 5-May-2017].
[8] Wikipedia. Gypsum. https://en.wikipedia.org/wiki/Gypsum. [Online; accessed 5-May-2017].
[9] Wikipedia. Gypsum. https://zh.wikipedia.org/wiki/%E7%9F%B3%E8%86%8F. [Online; accessed 5-May-2017].
[10] Wikipedia. Jennite. https://en.wikipedia.org/wiki/Jennite. [Online; accessed 5-May-2017].
[11] E-rocks. Jennite. https://e-rocks.com/item/dph48553/jennite. [Online; accessed 5-May-2017].
[12] Wikipedia. Kaolinite. https://en.wikipedia.org/wiki/Kaolinite. [Online; accessed 5-May-2017].
[13] Concrete Bridge Views. Metakaolin. http://www.hpcbridgeviews.com/i67/ Article3.asp. [Online; accessed 5-May-2017].
[14] Wikipedia. Quartz. https://en.wikipedia.org/wiki/Quartz. [Online; accessed 5-May-2017].
[15] Wikipedia. Tobermorite. https://en.wikipedia.org/wiki/Tobermorite. [Online; accessed 5-May-2017].
[16] R. K. Mishra, L. Fern´andez-Carrasco, R. J. Flatt, and H. Heinz. A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution. Dalton Trans, 43(27):10602–10616, 2014.
[17] M. M. Radwan and M. Heikal. Hydration characteristics of tetracalcium aluminoferrite phase in mixes containing beta-hemihydate and phosphogypsum. Journal of Materials Science, 38(22):4499–4505, 2003.
[18] R. Shahsavari, R. J.-M. Pellenq, and F.-J. Ulm. Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics, 13(3):1002–1011, 2011.
[19] H. Heinz, T.-J. Lin, R. K. Mishra, and F. S. Emami. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The interface force field. Langmuir, 29(6):1754–1765, 2013.
[20] H. Heinz and U. W. Suter. Atomic charges for classical simulations of polar systems. The Journal of Physical Chemistry B, 108(47):18341–18352, 2004.
[21] H. Heinz, H. Koerner, K. L. Anderson, R. A. Vaia, and B. L. Farmer. Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17(23):5658–5669, 2005.
[22] H. Heinz, R. A. Vaia, and B. L. Farmer. Interaction energy and surface reconstruction between sheets of layered silicates. The Journal of Chemical Physics, 124(22):224713, 2006.
[23] H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 126 and 96 lennard-jones potentials. The Journal of Physical Chemistry C, 112(44):17281–17290, 2008.
[24] R. K. Mishra, R. J. Flatt, and H. Heinz. Force field for tricalcium silicate and insight into nanoscale properties: Cleavage, initial hydration, and adsorption of organic molecules. The Journal of Physical Chemistry, 117(20):10417–10432, 2013.
[25] R. K. Mishra, L. Fern´andez-Carrasco, R. J. Flatt, and H. Heinz. A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution. Dalton Transactions, 43(27):10602, 2014.
[26] L. Liu, A. Jaramillo-Botero, W. A. Goddard, and H. Sun. Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. The Journal of Physical Chemistry, 116(15):3918–3925, 2012.
[27] M. Youssef, R. J.-M. Pellenq, and B. Yildiz. Glassy nature of water in an ultraconfining disordered material: The case of calcium-silicate-hydrate. Journal of the American Chemical Society, 133(8):2499–2510, 2011.
[28] P. A. Bonnaud, Q. Ji, B. Coasne, R. J.-M. Pellenq, and K. J. Van Vliet. Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir, 28(31):11422–11432, 2012.
[29] D. Ebrahimi, R. J.-M. Pellenq, and A. J. Whittle. Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir, 28(49):16855–16863, 2012.
[30] Q. Ji, R. J.-M. Pellenq, and K. J. Van Vliet. Comparison of computational water models for simulation of calcium–silicate–hydrate. Computational Materials Science, 53(1):234–240, 2012.
[31] P. A. Bonnaud, Q. Ji, and K. J. Van Vliet. Effects of elevated temperature on the structure and properties of calcium-silicate-hydrate gels: the role of confined water. Soft Matter, 9:6418–6429, 2013.
[32] D. Hou and Z. Li. Molecular dynamics study of water and ions transport in nano-pore of layered structure: A case study of tobermorite. Microporous and Mesoporous Materials, 195:9–20, 2014.
[33] D. Hou, T. Zhao, H. Ma, and Z. Li. Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: Structure, reactivity, and mechanical properties. The Journal of Physical Chemistry C, 119(3):1346–1358, 2014.
[34] D. Hou, C. Lu, T. Zhao, P. Zhang, and Q. Ding. Structural, dynamic and mechanical evolution of water confined in the nanopores of disordered calcium silicate sheets. Microfluid and Nanofluid, 19:1309–1323, 2015.
[35] C. Hu. Microstructure and mechanical properties of fly ash blended cement pastes. Construction and Building Materials, 73:618–625, 2014.
[36] D. Hou, Y. Zhu, Y. Lu, and Z. Li. Mechanical properties of calcium silicate hydrate (c–s–h) at nano-scale: A molecular dynamics study. Materials Chemistry and Physics, 146(3):503–511, 2014.
[37] D. Hou, H. Ma, Y. Zhu, and Z. Li. Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties. Acta Materialia, 67:81–94, 2014.
[38] D. Hou, T. Zhao, P. Wang, Z. Li, and J. Zhang. Molecular dynamics study on the mode i fracture of calcium silicate hydrate under tensile loading. Engineering Fracture Mechanics, 131:557–569, 2014.
[39] D. Hou, J. Zhang, Z. Li, and Y. Zhu. Uniaxial tension study of calcium silicate hydrate (c–s–h): structure, dynamics and mechanical properties. Materials and Structures, 48:3811–3824, 2015.
[40] M. Bauchya, H. Laubie, M.J. Abdolhosseini Qomi, C.G. Hoover, F.-J. Ulm, and R.J.-M. Pellenq. Fracture toughness of calcium–silicate–hydrate from molecular dynamics simulations. Journal of Non-Crystalline Solids, 419:58–64, 2015.
[41] K. Ioannidou, R. J.-M. Pellenq, and E. Del Gado. Controlling local packing and growth in calcium-silicate-hydrate gels. Soft Matter, 10(8):1121–1133, 2014.
[42] K. Ioannidou. Precipitation, gelation and mechanical properties of Calcium-Silicate-Hydrate gels. PhD thesis, ETH Zurich, 2014.
[43] K. Ioannidou, K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero, S. Yip, F.-J. Ulm, P. Levitz, R. J.-M. Pellenq, and E. Del Gado. Mesoscale texture of cement hydrates. Proceedings Of The National Academy Of Sciences Of The United States Of America, 113(8):2029–2034, 2016.
[44] K. Ioannidou, M. Kanducˇ, L. Li, D. Frenkel, J. Dobnikar, and E. Del Gado. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates. Nature Communications, (12106), 2016.
[45] J. M. Gere and B. J. Goodno. Mechanics of Materials, Brief Si Edition. Cengage Learning, 2011.
[46] I. N. Sneddon. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3(1):47 – 57, 1965.
[47] W. C. Oliver and G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(06):1564–1583, 1992.
[48] Lammps documentation. http://lammps.sandia.gov.
[49] J. F. Young, S. Mindess, A. Bentur, and R. J. Gray. The Science and Technology of Civil Engineering Materials. Pearson, 1998.
[50] M. E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, UK, 2010.
[51] N. H. Yeh. Studies of calcium silicate hydrate via molecular dynamics simulation. Master’s thesis, National Cheng Kung University, July 2016.
[52] Y. N. Chan, X. Luo, and W. Sun. Compressive strength and pore structure of highperformance concrete after exposure to high temperature up to 800°c. Cement and Concrete Research, 30:247–251, 2000.