簡易檢索 / 詳目顯示

研究生: 樊奕崙
Fan, Yi-Lun
論文名稱: 多元主族金屬硫族化合物之開發與物理性質探討
Synthesis and Physical Property of Multinary Main-Group Metal Chalcogenides
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 57
中文關鍵詞: 熱電效應非線性光學金屬硫族化合物
外文關鍵詞: seebeck coefficient, SHG, metal chalcogenides
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以助熔長晶法,合成出三個銦銻、銦鉍硫族化合物,兩個為等結構化合物Pb4In2M4Se13[ M = Sb (1), Bi (2) ]、Pb3.5In3Sb6Se17 (3) 及兩個銀錫硫族化合物,Ba6Ag3-xSn4+YQ16 [ Q = Se (4), S (5) ]。
    化合物Pb4In2M4Se13( M = Sb , Bi )晶系為Orthorhombic Pbam 其中Pb4In2Sb4Se13 (1) 晶格常數為a = 21.740 (2) Å, b = 27.213 (3) Å,c = 4.0725 (4) Å。結構是以兩個不同的[InSb1∞4Se12]鏈狀結構與InSe4四面體沿a軸以共用角方式連結,形成二維的骨架結構,Pb為陽離子填充在孔道中作為電荷平衡的角色。化合物Pb3.5In3Sb6Se17 (3) 晶系為Monoclinic P21/m,晶格常數為a = 17.8907(8) Å, b = 4.0874(2) Å ,c = 23.9434(11) Å,β = 111.743°。結構以SbSe6八面體組成兩個類似Bi2Te3結構的區塊,再以共用邊方式連结組成 [Sb1∞8Se16]的層狀結構,另一方面由InSe6與SbSe6八面體以共用邊形式連結組成[In1∞4Sb2Se14]與[In1∞2Sb2Se10]層狀結構,以此三種層狀結構組成三維的骨架結構,Pb為陽離子填充在孔道間做為電荷平衡的角色。化合物Ba6Ag3-xSn4+YQ16( Q = Se , S )晶系為Monoclinic Cc,其中Ba6Ag2.6Sn4.35Se16 (4) 晶格常數為a = 15.3027 (5) Å,b = 21.6419 (7) Å,c = 13.2518 (4) Å,β = 125.2690(10)°。結構是以AgSe4與SnSe4四面體彼此以共用角方式連結形成三維網狀結構,Ba為陽離子填充
    ii
    在孔道中作為電荷平衡的角色。
    化合物 (1)、(2) 與化合物 (3) ,經由紫外可見光遠紅外光光譜儀鑑定,其吸收波長範圍在近紅外光區,為窄能隙半導體,對於電子傳導能力較佳。所以化合物 (1)、(2) 與化合物 (3) 有熱電效應的應用性,因此我們對於化合物 (1)、(2) 與化合物 (3) 測量其電阻率及熱電勢。化合物 (4)、(5) 為非對稱中心的結構,具有非線性光學的性質,並且經由紫外可見光光譜儀鑑定,吸收波長約在紫外可見光區,為寬能隙半導體。所以化合物 (4)、(5) 對於在近紅外光區的非線性光學性質有其應用性,因此我們針對化合物 (4)、(5) 測量其二倍頻光學訊號,確定其非線性光學性質。

    New Quaternary metal chalcogenides in the Pb-In-Sb(Bi)-Se and Ba-Ag-Sn-S(Se) systems have been synthesized by solid state reactions in the use of KBr flux. In the Pb-In-Sb(Bi)-Se system, three new compounds Pb4In2Sb4Se13 (1), Pb4In2Bi4Se13 (2) and Pb7In6Sb12Se34 (3) have been discovered and characterized. Compound 1 crystallizes in orthorhombic Pbam with a = 21.740 (2) Å, b = 27.213 (3) Å, c = 4.0725 (4) Å. In structure 1, the InSe6 and SbSe6 octahedra share edges to form a building block featuring the NaCl-type lattice. These blocks are fused together through InSe4 tetrahedra running along the c axis that results the 2D layer structure. The Pb2+ cations are eight-coordinated and distributed between the layers. Compound 2 possesses the same structure as that in 1. Compound 3 crystallizes in monoclinic P21/m with a = 17.8907(8) Å, b = 4.0874(2) Å, c = 23.9434(11) Å, and β = 111.743°. Structure 3 adopts a 3D framework which can be dissected into three major building blocks. First, four crystallographic sites of SbSe6 octahedra sharing edges generate the inversion-related building blocks featuring the Bi2Te3-type lattice. Second, two distinct sites InSe6 and one the fifth site SbSe6 octahedra share edges to form a building block with the
    iv
    CdI2-type lattice. Third, the third site InSe6 and the sixth site SbSe6 octahedra share edges to form another CdI2-type building block. The UV-VIS-NIR reflectance spectrum revealed that the value of band gap are 0.89, 0.75 and 0.79 eV for 1, 2and 3, respectively. The temperature-dependence of resistivity and Seebeck coefficient showed that 1 is an n-type semiconductor-like material.
    In the Ba-Ag-Sn-S(Se) system, two new compounds Ba6Ag2.6Sn4.35Se16 (4) and Ba6Ag2.36Sn4.4S16 (5) have been discovered. Compound 4 crystallizes in monoclinic Cc with a = 15.3027 (5) Å, b = 21.6419 (7) Å, c = 13.2518 (4) Å, and β = 125.2690(10)°. Structure 4 possesses a 3D framework constructed by SnSe4 and AgSe4 tetrahedra by sharing their corners alternatively, and possesses the noncentro-symmetric characteristic. The measurements of second-harmonic generation (SHG) signals revealed that compound 4 displays strong intensity as compared with a reference GaAs. On the other hand, the sulfide analogue compound 5 has a similar performance of SHG signals but with less intensity. The polarity increased from metal sulfide to metal selenide may explain the stronger intensity of SHG signal for 4. However metal sulfide 5 has a better performance of laser damage threshold
    v
    than that for metal selenide 4. The UV-VIS-NIR reflectance spectrum revealed that the value of band gap are 1.7 and 2.36 eV for 4 and 5, respectively.

    摘要 i 誌謝 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 第二章 Pb-In-M-Se(M = Sb , Bi)系統之結果與討論 2-1實驗部份 7 2-1.1合成 7 2-1.2 單晶X-光繞射分析 9 2-1.3 能量散佈分析儀(EDS) 12 2-1.4粉末X-光繞射分析 13 2-1.5 紫外可見光近紅外光光譜儀 16 2-2 Pb-In-M-Se(M = Sb , Bi)結構 16 2-2.1 Pb4In2M4Se13 [ M = Sb (1) , Bi (2) ]結構分析 16 2-2.2 Pb3.5In3Sb6Se17 (3) 結構分析 24 2-3 Pb-In-M-Q ( M = Sb , Bi )物理性質測量及探討 30 第三章 Ba6Ag3-XSn4+YQ16 (Q = S , Se) 系統之結果與討論 3-1實驗部份 33 viii 3-1.1合成 33 3-1.2 單晶X-光繞射分析 35 3-1.3 能量散佈分析儀(EDS) 39 3-1.4粉末X-光繞射分析 40 3-1.5 紫外可見光近紅外光光譜儀 41 3-2 Ba6Ag3-XSn4+YQ16 [ Q = S (4) , Se (5) ]結構 42 3-3 Ba6Ag3-XSn4+YQ16(Q= Se , S)物理性質測定與探討 49 第四章 結論 55 參考文獻 57

    [1]
    Nakajima, S, Journal of Physics and Chemistry of Solids.1963, 24,479-485
    [2]
    Duck-Young Chung, Tim P. Hogan, Melissa Rocci-Lane, Paul Brazis,John R. Ireland, Carl R. Kannewurf, Marina Bastea, Ctirad Uher, and Mercouri G. Kanatzidis, J. Am. Chem. Soc. 2004, 126, 6414-6428
    [3]
    S.C.Abrahams, J.L. Bernstein, J. Chem. Phys. 1973,59,1625-1629
    [4]
    Jean-Francüois Guillemoles, Leeor Kronik, David Cahen, Uwe Rau, Axel Jasenek, Hans-Werner Schock, J. Phys. Chem. B. 2000, 104, 4849-4862
    [5]
    Abdeljalil Assoud, Navid Soheilnia, Holger Kleinke, Journal ofSolid State Chemistry. 2005,178, 1087-1093
    [6]
    Abdeljalil Assoud, Shahab Derakhshan, Navid Soheilnia, Holger Kleinke, Chem. Mater. 2004, 16, 4193-4198
    [7]
    Junghwan Do, Mercouri G. Kanatzidis, Z. Anorg. Allg. Chem.2003, 629, 621-624
    [8]
    Duck-Young Chung, Lykourgos Iordanidis, Krishnaswamy Kasthuri Rangan, Paul W. Brazis, Carl R. Kannewurf, Mercouri G. Kanatzidis, Chem. Mater. 1999, 11, 1352-1362
    [9]
    Jun-Ho Kim, Duck-Young Chung , Mercouri G. Kanatzidis, Chem. Commun. 2006, 1628–1630
    [10]
    W. Bronger, A. Donike und D. Schmitz, Z. Anorg. Allg. Chem.1999, 625, 435-437
    [11]
    Shahab Derakhshan, Abdeljalil Assoud, Nicholas J. Taylor, Holger Kleinke, Intermetallics, 2006, 14, 198–207
    [12]
    Antje Mrotzek, Duck-Young Chung, Nishant Ghelani, Tim Hogan, Mercouri G. Kanatzidis,Chem. Eur. J. 2001, 7, 1915-1926
    [13]
    Kyoung-Shin Choi, Duck-Young Chung, Antje Mrotzek, Paul Brazis,Carl R. Kannewurf, Ctirad Uher, Wei Chen, Tim Hogan, and Mercouri G. Kanatzidis, Chem. Mater. 2001, 13, 756-764
    [14]
    Kienle, L.;Simon, A., Journal of Solid State Chemistry. 2001, 161, 385-395
    [15]
    Kuei Fang Hsu, Sim Loo, Fu Guo, Wei Chen, Jeffrey S. Dyck, CtiradUher, Tim Hogan, E. K. Polychroniadis, Mercouri G. Kanatzidis, Science. 2004, 303, 818-821
    [16]
    Yasutoshi Noda, Shigeru Ohba, Yoshihiko Saito, Acta Cryst. 1983, B39,312-317
    [17]
    Theodora Kyratsi, Duck-Young Chung, Mercouri G. Kanatzidis, Journal of Alloys and Compounds . 2002, 388, 36–42
    - 57 -
    [18]
    L. Iordanidis and M. G. Kanatzidis, J. Am. Chem. Soc. 2000,122, 8319-8320
    [19]
    P. Larson, S. D. Mahanti and M. G. Kanatzidis, Phys. Rev. B. 2000, 61, 8162-8171
    [20]
    B. Chen, C. Uher, L. Iordanidis and M. G. Kanatzidis, Chem. Mater. 1997, 9, 1655-1658
    [21]
    F.J.Disalvo, Science. 1999, 285, 703-706
    [22]
    Ying C. Wang and Francis J. DiSalvo, Chem. Mater. 2000, 12, 1011-1017
    [23]
    A. Mrotzek, D.-Y. Chung, T. Hogan and M. G. Kanatzidis, J. Mater. Chem. 2000, 10 (7),1667-1672
    [24]
    K.-S. Choi, D.-Y. Chung, A. Mrotzek, P. Brazis, C. R. Kannewurf, C. Uher, W. Chen, T. Hogan and M. G. Kanatzidis, Chem. Mater. 2001, 13 (3), 756-764
    [25]
    Kraemer. V, Acta Crystallographica C. 1986, 42, 1089-1091
    [26]
    S.C.Abrahams, J.L.Bernstein, J. Chem. Phys. 1973, 59, 5415-5422
    [27]
    J.-H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank,R. Borwick, P. Cunningham, M. J. Rosker, M. G. Kanatzidis, J. AM. CHEM. SOC. 2003, 125, 9484-9493
    [28]
    (a)G.M. Sheldrick, SHELXTL-97,Program for the solution of Crystal Structure,University of Göttigen, Germany, 1997.
    (b)G.M. Sheldrick, SHELXTL-97,Program for the Refinement of Crystal Structure,University of Göttigen, Germany, 1997.
    [29]
    Chung, D. Y.; Choi, K. S.; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B., Hu, S.; Uher, C.; Kanatzidis, M. G., Chem. Mater. 1997, 9, 3060.
    [30]
    L.Spek, Acta Crystallogr.sect.A, 1990,46,C34

    下載圖示 校內:2014-07-30公開
    校外:2014-07-30公開
    QR CODE