| 研究生: |
黃明輝 Huang, Ming-Hui |
|---|---|
| 論文名稱: |
三維十字型微管道之液滴生成研究 A Study of Droplet Formation in Three-Dimensional Crossing Microchannels |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 混合液滴 、深寬比 、三維交錯微管道 |
| 外文關鍵詞: | Mixed Droplet, aspect ratio, 3-D cross microchannel |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電系統技術(MEMS)迅速發展,改變了人們對微小尺度上的了解,進而去更深入探討微小尺度下的研究,此系統具有體積小、成本低、檢測只需少量樣本、反應時間快、便於攜帶等優點,為了在有限的晶片面積上整合更多的功能,不同平面的三維結構晶片才是未來的發展潮流。
本研究使用三維十字型微管道進行液滴生成之研究,藉著三維十字型微管道液滴生成之特殊性,來比較不同管道外型,發現在寬扁管道中其液滴生成之特殊性較為穩定,進一步去控制入口流量,比較二維管道與三維管道在液滴生成上與其特殊性是否有所差異,最後發現二維管道在液滴生成上優於三維管道,但三維管道有其二維管道所沒有之特殊液滴生成方式,在三維十字型管道交錯窗口間,能夠相互結合生成液滴,利用此特殊性來生成混合液滴,調配不同比例的濃度,來進行混合與探討,經過不同種流量的控制實驗後,油水比控制在一定的範圍下能夠較穩定生成,且在調配不同濃度之混合液滴是有一定的穩定性,利用三維管道獨特的混合機制來控制液滴混合的濃度及比例,可在液滴生成的控制上進行更廣泛的研究。
Micro-Electro-Mechanical System (MEMS) have developed rapidly in recent years. This has changed people’s understanding of small scale systems, and has resulted in more in-depth small scale research. The new systems offer several potential advantages, such as portability, low cost, small volume of samples and reagents, short reaction time, among other things. In order to integrate more functions into a limited chip area, the three-dimensional multi-plane structure of chips are a trend which should continue into the future.
In this study, we use three-dimensional crossed microchannels to research droplet formation. The purpose is to compare the appearance of different channels by the special three-dimensional cross-shaped microchannels and to find out if the special case of the droplet formation in the wide and flat pipe is more stable. Through the change of the rate of flow of the fluid at the entrance, we can compare the difference between two-dimensional and three-dimensional pipeline droplet formation and note special cases. We can find out if the two-dimensional pipeline droplet formation is more suitable than the formation in the three-dimensional pipeline. The three-dimensional pipeline has a special case in droplet formation. This special case is in the cross-shaped pipe staggered between windows, whereby the two discrete phase flows can be combined to generate droplets. The advantage of this arrangement is that it can generate mixed droplets and deploy the different proportions in the concentrations of mixed droplets. We found that the oil-water ratio controls the generation of mixed droplets more stable in a certain range. There was a certain degree of stability and accuracy in the deployment of different concentrations of mixed droplets. We can do more extensive research in droplet formation control.
1. M.S. Talary, J.P.H. Burt, P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, 191-203, 1998.
2. L.W. van, H. Nicole, V. Oscar, M.M.L. van, H. Adele, J.K. Esther, P. Ad, A. Aharoni, J. van, T. Arjen, K. Jaap, “The application of DNA microarrays in gene expression analysis”, Journal of Biotechnology, 78, 271-280, 2000.
3. J.P. Brody, P. Yager, R.E. Goldstein and R.H. Austin, “Biotechnology at low Reynolds numbers”, Biophysical Journal, 71, 3430-3441, 1996.
4. C. Yang, D. Li, “Electrokinetic effects on pressure-driven liquid fows in rectangular microchannels”, Colloid and Interface Science, 194, 95-107, 1997.
5. V. Chokkalingam, B. Weidenhof, M. Kramer, W.F. Maier, S. Herminghaus and R. Seemann, “Droplet based microfluidics”, Lab on Chip 10, 1700-5, 2010.
6. H. Liu, Y.H. Zhang, “Droplet formation in a T-shaped microfluidic junction”, Journal of Applied Physics, 106 (3). 034906, 2009.
7. R.F. Ismagilov and G.M. Whitesides, “Pressure-Driven Laminar Flow in Tangential Microchannels : an Elastomeric Microfluidic Switch”, Analytical Chemistry, 73, 4682-4687,2001.
8. B. Zheng, J.D. Tice and R.F. Ismagilov, “Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based Assays”, Anal. Chem. 76, 4977-4982, 2004.
9. P. Guillot and A. Colin, “Stability of Parallel Flows in a Microchannel after a T-junction”, Phys Rev E Stat Nonlin Soft Matter Phys, 72, 066301, 2005.
10. H. Song, D.L. Chen and R.F. Ismagilov, “Reactions in Droplets in Microfluidic Channels”, Angew. Chem. Int. Edn Engl. 45, 7336-56, 2006
11. P. Garstecki, M.J. Fuerstman, H.A. Stone and G.M. Whitesides, “Formation of Droplets and Bubbles in a Microfluidic T-junction—Scaling and Mechanism of Break-up” , Lab on a Chip, 6, 437-446, 2006.
12. J. Hong, M. Choi, J.B. Edel and deMellow, “Passive self-synchronized two-droplet generation”, Lab on a Chip, 10, 2702-2709, 2010.
13. W. Liu, S.S. Guo, X.Z. Zhao, “Valve-based microfluidic droplet micromixer and mercury (II) ion detection”, Sensors and Actuators A, 172, 546-551, 2011.
14. Y.T. Chen, W.F. Fang, S.C. Ting, J.T. Yang, “Fission and fusion of droplets in a 3-D crossing microstructure”, Microfluid Nanofluid, 10.1007/s10404-012-0953-3, 2012.
15. H.C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219, 1997.
16. S. Wereley, “Nano-Bio-Micro fluids tutorial”, Nanotechuology, 2004.
17. O. Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London, 174, 1883.
18. X.F. Peng, G.P. Peterson, B.X. Wang, “Frictional flow characteristics of water flowing through rextangular microchannel”, Experimental Heat transfer, 7, 249-264, 1994.
19. Gadel Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture”, Journal of Fluids Engineering, 121, 1999.
20. P. Wu, W.A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277, 1983.
21. F.M. White, “Viscous Fluid Flow”, 3rd ed McGraw. Hill, New York, (2006).
22. 白庭育,「幾何外型對三維相切微管道流場之影響」,國立成功大學航空太空工程研究所碩士論文,民國96年7月。
23. W. Kern, D.A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology”, 187-190, 1970.
24. G.W. Rubloff, “Defect Microchemistry in SiO2 /Si Structures”, Journal of Vacuum Science & Technology A: Vacuum Surface and Films, 8, 1857-1863, 1990.
25. N. LaBianca, J. Delorme, “High aspect ratio resist for thick film application”, Proceedings of SPIE, 2438, 846-852, 1995.
26. 張珮郁,「微流元件內表面張力驅動之流體流動現象的實驗探討」,國立成功大學航空太空工程研究所碩士論文,民國92年7月。
27. M.D. Menech, “Modeling of Droplet Breakup in a Microfluidic T-shaped Junction with a Phase-field Model”, Physical Review E, 73, 031505, 2006.
28. 苗志銘,厲復霖,「匯流處構型對T型微流道中液滴流生成機制之影響」,中正嶺學報第三十五卷第二期,民國96年5月。