簡易檢索 / 詳目顯示

研究生: 梁哲語
Liang, Che-Yu
論文名稱: 評估紫藍色蝴蝶蘭顏色生成之原因
Assessment of violet-blue color formation in Phalaenopsis orchids
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 57
中文關鍵詞: 酸鹼值蝴蝶蘭紫羅蘭-藍色花青素金屬離子矢車菊素飛燕草素DpF3’5’HPeAHAPeF3’HPeMYB2PhF3’5’H
外文關鍵詞: anthocyanin, cyanidin, delphinidin, DpF3’5’H, metal ions, PeAHA, PeF3’H, PeMYB2, pH, PhF3’5’H, Phalaenopsis, violet-blue
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝴蝶蘭 (Phalaenopsis spp.) 為全世界重要的經濟花卉作物。蝴蝶蘭花卉中涵蓋許多的顏色,包括紅-紫色 (red-purple)、紫色 (purple)、紫-紫羅蘭色 (purple-violet)、紫羅蘭色 (violet)及紫羅蘭-藍色 (violet-blue)。然而紫羅蘭-藍色的蝴蝶蘭相較其他顏色的蝴蝶蘭是非常稀少,所以蘭花育種者及科學家都非常有興趣育種紫羅蘭-藍色的蝴蝶蘭,且期望育出真正藍色的蝴蝶蘭。花青素(anthocyanin)、液胞中酸化程度 (vacuolar acidification levels) 及金屬離子 (metal ions)為三個影響花色形成的主要因子。本篇論文擬分析紫羅蘭-藍色的蝴蝶蘭顏色生成原因,並將透過暫時性表現 (transient overexpression) 異質的 F3’5’H (flavonoid 3’,5’-hydroxylase) 以確認能否使飛燕草素 (delphinidin) 在蝴蝶蘭中累積並形成藍色。結果顯示從紫色到紫羅蘭-藍色的蝴蝶蘭中都呈現以矢車菊素為基底的花青素 (cyanidin-based anthocyanin),然而飛燕草素在這些顏色的蝴蝶蘭中皆不存在。這與在不同顏色的蝴蝶蘭中的 PeF3’H (Phalaenopsis equestris flavonoid 3’-hydroxylase) 基因皆為高表現而 PhF3’5’H (Phalaenopsis hybrid flavonoid 3’,5’-hydroxylase) 基因幾乎不表現之明顯差異的基因表現結果一致。透過暫時性表現飛燕草的 DpF3’5’H (Delphinium hybrid flavonoid 3’,5’-hydroxylase ) 在紫色蝴蝶蘭栽培種 P. OX Honey ‘OX1372’ 無法明顯累積飛燕草素,然而增加暫時性表現PeMYB2 則可以有 8 % 飛燕草的累積,這表示單獨暫時性表現飛燕草的DpF3’5’H 並無法增加飛燕草素的累積。進一步測試飛燕草素的累積,暫時性表現 DpF3’5’H 及 PeMYB2 在白色蝴蝶蘭栽培種-P. Sogo Yukidian V3 中,呈現了高達 53.6% 以飛燕草素為基質的花青素(delphinidin-based anthocyanin) 累積在白花蝴蝶蘭中並呈現了新穎的藍色。然而在蝴蝶蘭中暫時性表現蝴蝶蘭的 PhF3’5’H 及 PeMYB2 顯示 PhF3’5’H 幾乎喪失了飛燕草素累積的能力。透過序列分析受質辨識位六號 (substrate recognition site 6, SRS6),發現 PhF3'5'H 的 SRS6 序列中的第八號位胺基酸為纈安酸 (valine, V),另外在第五及十號位胺基酸為脯胺酸 (proline, P),而其他物種的 F3'5'H 的 SRS6 序列中第八號位則為丙胺酸 (alanine, A) 或絲氨酸 (serine,S)、第五號位及十號位胺基酸則分別為苯丙胺酸 (phenylalanine, F) 及榖氨醯胺 (Glutamine, Q),顯示蝴蝶蘭的 PhF3'5'H 中 SRS6 序列與其他物種的 F3'5'H 有明顯差異。進一步以分子入坞預測 (molecular docking prediction),發現以naringenin (N), dihydroquercetin (DHQ) 及 eriodictyol (E) 為受質,在DpF3'5'H中,受質的B-ring 芳香環 (aromatic ring)結合方向朝向SRS6,而PhF3'5'H呈現相反的受質結合方向,即B-ring 芳香環 (aromatic ring) 結合方向遠離 SRS6。此外,紫羅蘭-藍色的蝴蝶蘭的花瓣具有較高的酸鹼值 (pH5.33~5.54), 而紫色蝴蝶蘭花瓣則具有較低的酸鹼值 (pH4.77~5.04)。分離鑑定了五個氫離子傳輸蛋白的基因,分別命名為 PeAHA1~PeAHA5 ,其中 PeAHA1 及 PeAHA5 在不同顏色中具差異性的基因表現的結果,即在紫羅蘭-藍色的蝴蝶蘭有較低的 PeAHA5 基因表現,而在紫色蝴蝶蘭則有較高的 PeAHA5 基因表現。PeAHA1 則和 PeAHA5 相反的基因表現模式。推測這二個基因與紫羅蘭-藍色的蝴蝶蘭有較高的酸鹼值而紫色蝴蝶蘭則具有較低的酸鹼值呈現高度的相關性。進一步,在紫色及紫羅蘭-藍的蝴蝶蘭中,測量了五種金屬離子(鎂、鋁、鈣、鐵及鋅離子)的濃度及五種金屬離子與花青素的莫耳數比 (molar ratio)。在紫羅蘭-藍的蝴蝶蘭中,鋁離子、鈣離子及鐵離子與花青素的莫耳數比分別為紫色蝴蝶蘭的 3.6 倍、2.5 倍及3 倍,但鎂離子及鋅離子與花青素的莫耳數比則無明顯差異。綜合上述,液胞中酸化的不足及含較高的鋁離子、鈣離子及鐵離子與花青素的莫耳數比可能是造成紫羅蘭色-藍色的蝴蝶蘭形成的主因,但並非因為飛燕草的累積所致。

    Phalaenopsis spp. is an important cash crop worldwide. There are abundant flower colors in Phalaenopsis ranging from red-purple, purple, purple-violet, violet, and violet-blue hues. However, violet-blue color is less bred than the other colors, so breeders and geneticists are very interested in breeding violet-blue orchids, and expect to produce ‘true blue’ orchids. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aims to identify the factors causing violet-blue color in Phalaenopsis flowers as well as analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3’5’H (flavonoid 3’,5’-hydroxylase) in Phalaenopsis. Results showed that cyanidin-based anthocyanin was majorly accumulated in various colors of Phalaenopsis flowers ranged from purple to violet-blue colors, while delphinidin was not detected. This was concomitant with the fact that higher expression of PeF3’H (Phalaenopsis equestris flavonoid 3’-hydroxylase) and little to no expressions of PhF3’5’H (Phalaenopsis hybrid flavonoid 3’,5’-hydroxylase) in various colors of Phalaenopsis. Transient overexpression of DpF3’5’H from Delphinium hybrid in purple flower P. OX Honey ‘OX1372’ resulted limited delphinidin accumulation. However, transient overexpression of both DpF3’5’H and PeMYB2 resulted 8% delphinidin accumulation. It suggests that only overexpression of DpF3’5’H was not sufficient for delphinidin accumulation in transient assay. Furthermore, upto 53.6% delphinidin accumulation and novel blue-hue were resulted in white flower P. Sogo Yukidian V3 cultivar by transient overexpression of both DpF3’5’H and PeMYB2. In contrast, transient overexpression of both PhF3’5’H and PeMYB2 did not result delphinidin accumulation, indicating that PhF3’5’H was lack of the ability of delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3’5’H has valine (V) at position 8, and with proline (P) at both positions 5 and 10, while the F3’5’Hs from other plants have alanine (A) or serine (S) at position 8, and phenylalanine (F) at position 5 and glutamine (Q) at position 10. Prediction of molecular docking of the substrates including naringenin, dihydroquercetin and eriodictyol showed their binding direction of aromatic rings (B-ring) were oriented toward SRS6 of DpF3'5'H, while the substrate binding direction is away from the SRS6 of PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers were ranged from 5.33-5.54 and 4.77-5.04, respectively. To understand the proton transport, five PeAHAs were identified from OrchidBase, namely PeAHA1~PeAHA5. Among them, PeAHA5 showed lower expression in the violet-blue cultivars than in the purple cultivars, while PeAHA1 showed a converse expression profiles. This may be correlated to the higher vacuolar pH in violet-blue color of Phalaenopsis than that in both purple and white color ones. Furthermore, concentration of five metal ions including Mg2+, Al3+, Ca2+, Fe3+ and Zn2+ were measured in white, purple, extreme deep-purple and violet-blue Phalaenopsis flowers. The molar ratio of Al3+, Ca2+ and Fe3+ metal elements to anthocyanin were 3.6 X, 2.5 X, and 3.0 X higher in violet-blue color than those in the purple color Phalaenopsis, respectively. In contrast, there were no significant differences in the molar ratio of Mg2+ and Zn2+ metal elements to anthocyanin among various flower colors. Conclusively, violet-blue color formation in Phalaenopsis was caused by the absence of vacuolar acidification as well as the higher molar ratio of Al3+, Ca2+ and Fe3+ metal elements to cyanidin-based anthocyanin than that in purple color Phalaenopsis, but not due to the formation of delphinidin.

    中文摘要 I Abstract III 致謝 V Contents VI List of Tables IX List of Figures X List of Appendix Figures XII Abbreviations XIII 1. Introduction 1 1.1. Phalaenopsis orchids 1 1.1.1 Economic importance of Phalaenopsis 1 1.1.2 Breeding of blue color flower in Phalaenopsis 1 1.2 Importance of flower color in higher plants 2 1.2.1 Pigment components of flower color 2 1.2.2 Anthocyanin 2 1.2.3 Flower of blue color 2 1.3 Biological roles of anthocyanin 2 1.3.1 The biosynthesis pathway of anthocyanin 2 1.3.2 F3’H and F3’5’H in the anthocyanin biosynthesis pathway 3 1.3.3 Genetic engineering for producing blue color flowers 3 1.3.4 PeMYB2 transcription factor in regulation of floral pigmentation in Phalaenopsis spp. 4 1.4 Biological roles of H+ concentration in vacuole 4 1.4.1 pH value and flower color-shift 4 1.4.2 Transporter on tonoplast for the regulation of vacuolar acidification 5 1.5 Biological roles of vacuolar metal ions 5 1.5.1 Structure of metalloanthocyanin 5 1.5.2 Metal ions and blue color formation 6 2. Purpose 7 3. Materials and methods 8 3.1 Plant materials 8 3.2 Definition of flower colors 8 3.3 Extraction of anthocyanin 9 3.4 High-performance liquid chromatography (HPLC) 9 3.5 RNA extraction and reverse transcription to cDNA 10 3.6 5’-RACE and 3’-RACE 10 3.7 Quantitative real-time PCR 10 3.8 Sequence alignment and phylogenetic analysis 11 3.9 Molecular modeling and docking 11 3.10 Transient overexpression of heterologous F3’5’Hs and PeMYB2 in Phalaenopsis flowers 12 3.11 pH value measurement and visible absorption spectra of corolla homogenates 12 3.12 Metal ion measurement of the colorful petals 13 4. Results 14 4.1 Anthocyanin 14 4.1.1 Cyanidin-based anthocyanin is majorly accumulated in various colors of Phalaenopsis spp. 14 4.1.2 PeF3’H and PhF3’5’H belong to cytochrome 75B and 75A family, respectively 14 4.1.3 Strong expression of PeF3’H was concomitant to cyanidin-based anthocyanin in various Phalaenopsis spp. 15 4.1.4 Accumulation of delphinidin-based anthocyanin and blue pigmentation formation was rescued from transient overexpression both of DpF3’5’H and PeMYB2 15 4.1.5 Substrate recognition site 6 (SRS6) of PeF3’H and PhF3’5’H and prediction of substrate docking 16 4.1.6 Expression of F3’H and F3’5’H by transcriptomic analysis 17 4.2 Vacuolar pH value 17 4.2.1 Violet-blue color cultivars have higher vacuolar pH than purple and white cultivars 17 4.2.2 Absorption spectra of anthocyanin extract from Phalaenopsis 18 4.2.3 Five PeAHAs belong to H+-ATPase 3A family 18 4.2.4 Expression profiles of PeAHA1~PeAHA5 genes 19 4.3 Metal ions 19 4.3.1 Positive correlation between concentration of Mg2+ increased and cyanidin-based anthocyanin accumulation 19 5. Discussion 21 5.1 “True blue” color Phalaenopsis flower could be created by genetic engineering of anthocyanin biosynthesis pathway 21 5.2 F3’5’H was expressed in roots in addition to in floral organs 22 5.3 The same anthocyanin compound but with different vacuolar pH values between blue and red hue flowers 22 5.4 Vacuolar acidification is regulated by proton pump 22 5.5 Color-shift from violet-blue to purple color might be regulated from the divergence of molar ratio of Fe3+ to cyanidin-based anthocyanin in Phalaenopsis 23 6. Conclusion and perspectives 24 7. References 25 Table 1. Primers used in this study. 30 Table 2. List of concentration of metal elements and anthocyanin and their molar ratio. 32 Figure 1. Color definition according to Royal Horticultural Society Color Chart (RHSCC). 33 Figure 2. Flowers used in this study, and their definition of color code. 34 Figure 3. HPLC analysis of anthocyanin compound. 35 Figure 4. Phylogenetic tree of F3’5’H and F3’H. 36 Figure 5. Quantitative RT-PCR analysis of F3’H and F3’5’H. 37 Figure 6. HPLC of anthocyanin compound in P. OX Honey ‘OX1372’ with transient overexpression of PhF3’5’H or DpF3’5’H. 38 Figure 7. HPLC of anthocyanin compound in P. OX Honey ‘OX1372’ with transient overexpression PhF3’5’H or DpF3’5’H with the presence of PeMYB2. 39 Figure 8. HPLC of anthocyanin compound in P. Sogo Yukidian ‘V3’ with transient overexpression both PhF3’5’H or DpF3’5’H with the presence of PeMYB2. 40 Figure 9. Multiple alignment of deduced amino acid sequences of F3’5’H and F3’H from P. Purple Martin. 41 Figure 10. Multiple alignment of substrate recognition site 6 (SRS6) with F3’Hs and F3’5’Hs. 42 Figure 11. Multiple alignment of SRS1, SRS2, SRS4, SRS5 and SRS6 between DpF3’5’H and PhF3’5’H. 43 Figure 12. Substrate docking of F3’5’H and its substrates. 44 Figure 13. Expression of both of F3’5’H and F3’H in various tissues of Phalaenopsis with FPKM values in transcriptomics analysis. 45 Figure 14 . Expression of both of F3’5’H and F3’H in various organs of Phalaenopsis and Vanilloideae by detection of FPKM and RPKM values in transcriptomics analysis. 46 Figure 15. Assessment of pH value in petal crude extracts of various colors cultivars of Phalaenopsis. 47 Figure 16. Absorption spectra of anthocyanin extract from P. Big Chili. 48 Figure 17. Absorption spectra of anthocyanin extract from P. OX Honey ‘OX1372’. 49 Figure 18. Absorption spectra of anthocyanin extract at different time points. 50 Figure 19. Phylogenetic tree of PeAHA1-PeAHA5. 51 Figure 20. Quantitative RT-PCR analysis of five P-type H+ ATPase. 52 Appendix 1. Flower color of various flowering development stages of violet-blue P. Kenneth Schubert and P. Purple Martin 53 Appendix 2. Six native species used as parents for breeding blue-hue Phalaenopsis 54 Appendix 3. The three major classes of plant pigments 55 Appendix 4 . The anthocyanin biosynthesis pathway 56 Appendix 5. Anthocyanin production and qRT-PCR analysis of expression profile analysis in the flowers in transient assay of overexpression PeMYB2 57

    林南欣 (2012) Studies of flower color and pigment composition of Phalaenopsis. 蝴蝶蘭花色與色素組成份之研究,國立嘉義大學園藝學系碩士論文

    曹進義 (2013) 蝴蝶蘭藍色花之育種 台灣蘭花育種者協會專刊-台灣蘭花之育種: 78-85

    Ashihara, H., Deng W.W., Mullen, W., Crozier, A. (2010) Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71: 559-566
    Brugliera, F., Tao, G.Q., Tems, U., Kalc, G., Mouradova, E., Price, K., Stevenson, K., Nakamura, N., Stacey, I., Katsumoto, Y., Tanaka, Y., Mason, J.G. (2013) Violet/blue chrysanthemums metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol. 54: 1696–1710.
    Christenhusz, M.J.M., Byng, J.W. (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261: 201-217.

    Chao, Y.T., Yen, S.H., Yeh, J.H., Chen, W.C., Shih M.C. (in press) Orchidstra 2.0 - A transcriptomics resource for the orchid family. Plant Cell Physiol.

    Fu, C.H., Chen, Y.W., Hsiao, Y.Y., Pan, Z.J., Liu, Z.J., Huang, Y.M., Tsai, W.C., Chen, H.H. (2011) OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol. 52:238-243.

    Faraco, M., Spelt, C., Bliek, M., Verweij, W., Hoshino, A., Espen, L., Prinsi, B., Jaarsma, R., Tarhan, E., Boer, A.H.D., Sansebastiano, G.P.D., Koes, R., Quattrocchio, F.M. (2014) Hyperacidification of Vacuoles by the Combined Action of Two Different P-ATPases in the Tonoplast Determines Flower Color. Cell Reports 6: 32-43.
    Fukui, Y., Tanaka, Y., Kusumi, T., Iwashita, T., Nomoto, K. (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3’, 5’ -hydroxylase gene. Phytochemistry 63: 15–23.
    Gotoh, O. (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267: 83–90.
    Grotewold, E. (2006) The genetics and biochemistry of floral pigments. Auun Rev Plant Biol. 57:761-780.
    Gaxiola, A.R., Palmgren, G.M., Schumacher, K. (2007) Plant proton pump. FEBS Letters 581: 2204-2214.
    Goto, T., Tamura, H., Kawai, T., Hoshino, T., Harada, N., Kondo, T. (1986) Chemistry of metalloanthocyanins. Ann. N.Y. Acad. Sci. 471: 155-173.

    Hsu, C.C., Chen, Y.Y., Tsai, W.C., Chen, W.H., Chen, H.H. (2015) Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiology 168: 175-191.
    Harborne, J.B., William, C.A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55: 481-504.
    Ito, D., Shinkai, Y., Kato, Y., Kondo, T., Yoshida, K. (2009) Chemical studies on different color develoment in blue- and red- colored sepal cells of hydrangea macrophylla. Biosci Bitotechnol Biochem. 73: 1054-1059.
    Li, Y., Provenzano, S., Bliek, M., Spelt, C., Appelhagen, I., Faria, L.M.D., Verweij, W., Schubert, A., Sagasser, M., Seidel, T., Weisshaar, B., Koes R., Quattrocchio, F. (2016) Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification. New Phytologist 211: 1092-1107.
    Katsumoto, Y., Fukuchi-Mizutani, M., Fukui, Y., Brugliera, F., Holton, T.A., Karan, M., Nakamura, N., Yonekura-Sakakibara, K., Togami, J., Pigeaire, A., Tao, G.Q., Nehra, N.S., Lu, C.Y., Dyson, B.K., Tusda, S., Ashikari, T., Kusumu, T., Mason, J.G., Tanaka, Y. (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48: 1589–1600.
    Kondo, T., Oyama, K., Yoshida, K. (2001) Chiral molecular-recognition on formation of a metalloanthocyanin: a supramolecular metal complex pigment from blue flower of Salvia patens. Angew Chem Int Ed Engl. 40: 894–897.
    Kondo, T., Ueda, M., Isobe, M. (1998) A new molecular mechanism of blue color development with protocyanin, a supramolecular pigment from cornflower, Centaurea cyanus. Tetrahedron Lett. 49: 8307–8310.
    Kondo, T., Ueda, M., Tamura, H., Yoshida, K., Isobe, M., Goto, T. (1994) Composition of protocyanin, a self-assembled supramolecular pigment form the blue cornflower Centaurea cyanus. Angew Chem Int Ed Engl. 33: 978–979.
    Kondo, T., Yoshida, K., Nakagawa, A., Kawai, T., Tamura, T., Goto, T. (1992) Structural basis of blue-colour development in flower petals: structure determination of commelinin from Commelina communis. Nature 358: 515–518.
    Noda, N., Aida, R., Kishimoto, S., Ishiguro, K., Fukuchi-Mizutani, M., Tanaka, Y., Ohmiya, A. (2013) Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant Cell Physiol. 54: 1684–1695.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 25:1605-1612.

    Rausher, M.D. (2006) The evolution of flavonoids and their genes. In The Science of Flavonoids. Springer, Berlin. pp. 175–211.
    Sansen, S., Yano, J.K., Reynald, R.L., Schoch, G.S., Stout, C.D., Johnson, E.F. (2007) Crystal Structure of Human Microsomal P450 1A2 in complex with alpha-naphthoflavone. J. Biol. Chem. 282: 14348-14355
    Sweet, H.R. (1980) The genus Phalaenopsis. Day Printing Corporation, California, Pomona. pp.118-123.

    Seitz, C., Ameres, S., Forkmann, G. (2007) Identification of the molecular basis for the functional difference between flavonoid 3’-hydroxylase and flavonoid 3’-, 5’- hydroxylase. FEBS Lett. 581: 3429–3434.
    Seitz, C., Ameres, S., Schlangen, K., Forkmann, G., Halbwirth, H. (2015) Multiple evolution of flavonoid 3’, 5’ -hydroxylase. Planta 242: 561–573.
    Sun, Y., Huang, H., Meng, L., Hu, K., Dai, S.L.(2013) Isolation and functional analysis of a homolog of flavonoid 3’5’-hydroxylase gene from Pericallis x hybrid. Physiologia Plantarum 149: 151-159.
    Shoji, K., Miki, N., Nakajima, N., Momonoi, K., Kato, C., Yoshida, K. (2007) Perianth Bottom-Specific Blue Color Development in Tulip cv. Murasakizuisho Requires Ferric Ions. Plant Cell Physiol. 48: 243-251.

    Shiono, M., Matsugaki, N., Takeda, K. (2005) Structure of the blue cornflower pigment. Nature 436: 791.
    Sasaki, N., Nakayama, T. (2014) Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration. Plant Cell Physiol. 56: 28-40.
    Tsai, W.C., Fu, C.H., Hsiao, Y.Y., Huang, Y.M., Chen, L.J., Wang, M., Liu, Z.J., Chen, H.H. (2013) OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol. 54: e7.
    Tanaka, Y., Sasaki, N., Ohmiya, A. (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54: 733-749.
    Tanaka, Y., Tsuda, S., Kusumi, T. (1998) Metabolic engineering to modify flower color. Plant Cell Physiol. 39: 1119–1126.
    Takeda, K., Yanagisawa, M., Kifune, T., Kinoshita, T., Timberlake, C.F. (1994) A blue pigment complex I flowers of Salvia patens. Phytochemistry 35: 1167–1169.
    Verweij, W., Spelt, C., Sansebastiano, G.P.D., Vermeer, J., Reale, L., Ferranti, F., Koes, R., Quattrocchio, F. (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol. 10: 1456-1462.
    Yoshida, K., Kitahara, S., Ito, D., Kondo, T. (2006) Ferric ions involved in the flower color development of the Himalayan blue poppy, Mconopsis grandis. Phytochemistry 67: 992-998.
    Yoshida, K., Kawachi, M., Mori, M., Maeshima, M., Kondo, M., Nishimura, M., Kondo, T. (2005) The Involvement of Tonoplast Proton Pumps and Na+(K+)/H+ Exchangers in the Change of Petal Color During Flower Opening of Morning Glory, Ipomoea tricolor cv. Heavenly Blue. Plant Cell Physiol. 46: 407-415.
    Yoshida, K., Kondo, T., Okazaki. Y., Katou, K. (1995) Cause of blue petal colour. Nature 373: 26.
    Yoshida, K., Mori, M., Kondo, T. (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep.26: 884-915.
    Yoshida, K., Negishi, T. (2013) The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals. Phytochemistry 94: 60-67.
    Yoshida, K., Toyama-Kato, Y., Kameda, K., Kondo, T. (2003) Sepal color variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode. Plant Cell Physiol. 44: 262-268.

    無法下載圖示 校內:2022-01-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE