| 研究生: |
陳彥妤 Chen, Yan-Yu |
|---|---|
| 論文名稱: |
以微流道系統製備高分子電解質載體及其在微生物燃料電池之應用 Fabrication of polyelectrolyte microcarrier by using microfluidic systems for application in microbial fuel cell |
| 指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 高分子電解質 、微生物燃料電池 、空氣陰極 、微生物液滴 、微液滴系統 、T型流道 |
| 外文關鍵詞: | polyelectrolyte microcarrier, microbial fuel cell, air-cathode, microbial microdroplet, droplet microfluidic system, T-junction |
| 相關次數: | 點閱:165 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了在維流體系統中發展一個可以取代菌膜且有效固定微生物的方法,本論文提出了以微載體包覆微生物的方式,將微生物濃縮在一特定位置或區域內,一方面可促進微生物生長,另一方面結合連續式操作,補充具活性的微生物,維持系統運作的效能。因此本研究中設計並製備了一微流體式微生物燃料電池,結合了微載體填充槽,來研究微載體與微生物燃料電池效能之間的關係。
本論文分成三個部分。由於微液滴系統是一個具有潛力可發展成量產製備微載體的平台,因此了解如何在此系統下準確控制液滴和微載體的生成是很重要的。所以首先論文的第一部分以實驗法研究高分子電解質(褐藻酸鈉)其液滴在不同無因次群(毛細係數、相對流量、相對黏度、深寬比)操控下的生成情形,並利用偏最小二乘法(PLS)回歸求得一經驗方程,用以預測褐藻酸鈉微液滴的尺寸。
接著在第二部分中研究了如何將高分子電解質液滴生成並聚合成微載體,且探討在高分子電解質液滴中添加顆粒狀溶質(PS微粒子、小球藻與大腸桿菌)對於高分子電解質溶液性質以及液滴/微載體生成的影響,最後將其應用於微生物培養。實驗結果顯示,除了介面張力和剪切力之外,溶液膠體穩定性與顆粒溶質的形態對於液滴生成也是很重要的。溶液膠體穩定性越好,有助於液滴生成之預測。若添加了顆粒溶質後增加了分散相與微流道壁的親和力,容易使得液滴生成模式從Dripping區域變換到Jetting區域。添加尺寸與形態越均勻的顆粒溶質,液滴生成與液滴大小幾乎與不添加顆粒狀溶質時狀態一樣,不受其影響。最後以PDDA為材料合成微載體後進行微生物培養測試,發現大腸桿菌包覆在PDDA的生長活性與沒有包覆、在懸浮溶液系統的情形一樣。然而小球藻被包覆在PDDA之後,因為此材料中的四級銨結構阻礙了小球藻的養分,因此無法在此材料中順利增長。
微型微生物燃料電池被視為極具潛力的平台,可用來篩選適合的微生物、碳源及許多操作參數,用以調整大型微生物燃料電池操作的最佳化條件。然而微型燃料電池的操作仍有一些困難,像是低功率輸出及低庫倫效率。因此在第三部分中,PDDA微載體被應用於空氣陰極微型微生物燃料電池中,來研究微載體對於微型燃料電池的影響。首先研究不同種類的純菌樣品(Shewanella oneidensis MR-1, Aeromonas hydrophila NIU01 and Proteus hauseri ZMd44)在此系統的效應。由於此材料的導電度低,造成包覆在微載體的三種純菌系統中的電荷阻抗都增加了。另外A. hydrophila NIU01 and P. hauseri ZMd44此兩種純菌在含有醋酸鈉為碳源的培養液中,生長狀態不佳,造成在微載體系統的功率隨著培養時間,分別降低了71%及45%。另一方面,S. oneidensis MR-1則是呈現旺盛的生長情形,且包覆在微載體後,微型微生物燃料電池的效能呈現相對較穩定的功率,大約維持在9.59 μW/m2。
接著,本研究以微型微生物燃料電池培養一混菌樣品來深入研究其效能。其中我們利用了顯微鏡(共軛焦顯微鏡、電子顯微鏡)、循環伏安法、交流阻抗分析儀以及連續式操作來檢測微載體的生物相容性、陽極的氧化還原提升之能力以及減少內電阻的能力等性質。對於混菌樣品而言,在包覆於微載體培養168小時後,其功率輸出高於菌膜系統250%,內電阻相較於菌膜系統降低了56%。即使其生長狀態與A. hydrophila NIU01或P. hauseri ZMd44類似,它的效能依然在微載體的協助下改善且優於其他兩種純菌的表現,對於在微生物燃料電池領域中,具有更實際的應用優勢。
最後,本研究提出一簡易的方式製備以高分子電解質為材料的微載體,且具有量產之優勢。此外,微載體與空氣陰極微型微生物燃料電池結合後,有潛力可用於快速篩選具產電活性的微生物,以及其他重要的操作參數像是有機物負載量和營養成分等。另外,成熟的微生物培養技術亦可適用於微載體系統,期望能取代原位菌膜,減少系統啟動的時間,並協助更換補充具活性的微生物來源。
To develop effective methods for retaining microorganisms in microscale devices without developing in-situ biofilm, microcarrier is proposed as a promising method in this study for concentrating functional microorganisms at desired locations and facilitating the establishment and replenishment of microorganism cells in continuous microfluidic bioprocess. Hence, a microfluidic-based microbial fuel cell (μMFC) with packed polyelectrolyte microcarriers is designed, fabricated and investigated with regard to the performance of MFC after associated with microcarriers.
This dissertation contains three parts. Since the droplet microfluidic system is the technique for mass production of microcarriers, it is critical to understand how to control the droplet/particle formation precisely in the droplet microfluidic system. Therefore, in the first part of this study, the generation of polyelectrolyte (alginate) micro-droplets is experimentally investigated by varying dimensionless groups (capillary number, relative flow rate, relative viscosity and aspect ratio). Then a reliable empirical model for predicting the size of alginate droplets is built by partial least square (PLS).
In the second part, this study experimentally investigates the generation of polyelectrolyte droplets, and subsequently, cured microcarriers for application in microorganism cultivation. This study examines the effects of particulate solutes (polystyrene microparticles, Chlorella vulgaris, and Escherichia coli) on polyelectrolyte solution properties (zeta potential, contact angle, and interfacial tension) and the droplet/microcarrier formation. The results indicated that, except for interfacial tension and shear stress, the colloidal stability and morphology of particulate solutes should also be considered when generating droplets. A particulate solute resulting in a dispersed phase with colloidal stability was beneficial for the predictable droplet generation. A particulate solute increasing the affinity between the disperse phase and the channel wall hastened the droplet generation to shift from the dripping region to the jetting region. Adding particulate solutes with consistent size and morphology into the dispersed phase was less likely to affect the droplet formation and the droplet size. The droplets containing microorganisms were cured to generate poly-DDA (PDDA) microcarriers, and E. coli cultivated in PDDA microcarriers had the same viability as those cultivated in suspension. However, C. vulgaris cultivated in PDDA microcarriers failed to proliferate possibly due to the blockage of the nutrient intake by the quaternary ammonium cation of DDA.
Micro-scale MFCs are considered promising platforms for screening suitable microorganisms, carbon sources, and many operational parameters for aiding the optimization of large-scale MFCs. However, micro-scale MFCs still have challenges such as low power output and Coulombic efficiency. In the third part, the application of PDDA microcarrier in an air-cathode μ-Liter Microbial Fuel Cell (μMFC) is demonstrated. The performance of the μMFC is investigated by using polyelectrolyte microcarriers encapsulating various pure culture microorganisms (Shewanella oneidensis MR-1, Aeromonas hydrophila NIU01 and Proteus hauseri ZMd44). Due to the low electric conductivity of this polyelectrolyte polymer, the resistance of charge transfer is increased after encapsulating three strains of pure culture exoelectrogens in microcarriers. For A. hydrophila NIU01 and P. hauseri ZMd44, since they were retarded in the medium containing sodium acetate as a carbon source, the growth state is relative weak and the power performance decreases to 71% and 45%, respectively, in the microcarrier system along the cultivation period. By contrast, S. oneidensis MR-1 shows a vigorous growth state in μMFCs and performs a relative stable power generation at around 9.59 μW/m2 after encapsulating in microcarriers.
The performance of mixed culture microorganisms in μMFCs is also further investigated. The microcarrier’s biocompatibility, ability in enhancing the redox activity of anode, and the capabilities in reducing internal resistance and sustained electricity generation were examined with a series of assays including microscopy (both confocal fluorescence and electronic), cyclic voltammetry, AC impedance analyzer and continuous operation in the air-cathode μMFC for 168 hours. For mixed culture microorganism, the polyelectrolyte microcarrier has proven to increase its power output to 250% and to reduce internal resistance by about 56% compared with biofilm during the 168-hour operation. Even though the growth state of mixed culture microorganisms is as similar as that of A. hydrophila NIU01 or P. hauseri ZMd44, its performance is improved and better than these two pure strains after encapsulating in microcarriers. Eventually, mixed communities show its predominance for more practical applications in the field of microbial fuel cell.
In conclusion, the fabrication process of the polyelectrolyte microcarrier is simple and has the potential to scale up into mass production. The proposed polyelectrolyte microcarrier and air-cathode μMFC have great potential not only in rapid screening of electrochemically active microorganisms but also other critical parameters such as organic loading rate and nutrient components. Additionally, microcarriers containing a mature microorganism culture can replace in situ biofilms in microfluidic bioprocesses to reduce the startup duration and facilitate the replenishment of functional microorganisms.
Chapther 1
Abeille, F., Mittler, F., Obeid, P., Huet, M., Kermarrec, F., Dolega, M. E., Navarro, F., Pouteau, P., Icard, B., Gidrol, X., Agache, V. and Picollet-D'hahan, N., 2014. Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor. Lab on a Chip. 14, 3510-3518.
Chang, C. B., Wilking, J. N., Kim, S.-H., Shum, H. C. and Weitz, D. A., 2015. Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth. Small. 11, 3954-3961.
Chen, Y. Y., Chen, Z. M. and Wang, H. Y., 2012. Enhanced fluorescence detection using liquid-liquid extraction in a microfluidic droplet system. Lab on a Chip. 12, 4569-4575.
Gardel, E. J., Nielsen, M. E., Grisdela, P. T. and Girguis, P. R., 2012. Duty Cycling Influences Current Generation in Multi-Anode Environmental Microbial Fuel Cells. Environmental Science & Technology. 46, 5222-5229.
Golberg, A., Linshiz, G., Kravets, I., Stawski, N., Hillson, N. J., Yarmush, M. L., Marks, R. S. and Konry, T., 2014. Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water. Plos One. 9, 1-9.
Han, A., Hou, H., Li, L., Kim, H. S. and de Figueiredo, P., 2013. Microfabricated devices in microbial bioenergy sciences. Trends in Biotechnology. 31, 225-232.
Jeong, H.-H., Jeong, S.-G., Park, A., Jang, S.-C., Hong, S. G. and Lee, C.-S., 2014. Effect of temperature on biofilm formation by Antarctic marine bacteria in a microfluidic device. Analytical Biochemistry. 446, 90-95.
Jung, I., Seo, H. B., Lee, J.-e., Chan Kim, B. and Gu, M. B., 2014. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Analyst. 139, 4696-4701.
Kang, D. K., Ali, M. M., Zhang, K., Huang, S. S., Peterson, E., Digman, M. A., Gratton, E. and Zhao, W., 2014. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nat Commun. 5, 1-10.
Kim, S. K., Lim, H., Chung, T. D. and Kim, H. C., 2006. A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis. Sensors and Actuators B: Chemical. 115, 212-219.
Lee, D. H., Bae, C. Y., Han, J. I. and Park, J. K., 2013. In Situ Analysis of Heterogeneity in the Lipid Content of Single Green Microalgae in Alginate Hydrogel Microcapsules. Analytical Chemistry. 85, 8749-8756.
Liang, C. Z., Sun, S. P., Li, F. Y., Ong, Y. K. and Chung, T. S., 2014. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science. 469, 306-315.
Lovley, D. R., Stolz, J. F., Nord, G. L. and Phillips, E. J. P., 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 330, 252-254.
Nishio, K., Kimoto, Y., Song, J., Konno, T., Ishihara, K., Kato, S., Hashimoto, K. and Nakanishi, S., 2013. Extracellular Electron Transfer Enhances Polyhydroxybutyrate Productivity in Ralstonia eutropha. Environmental Science & Technology Letters. 1, 40-43.
Park, A., Jeong, H.-H., Lee, J. and Lee, C.-S., 2012. The inhibitory effect of phloretin on the formation of Escherichia coli O157:H7 biofilm in a microfluidic system. Biochip Journal. 6, 299-305.
Park, S. J., Lee, Y. K., Cho, S., Uthaman, S., Park, I.-K., Min, J.-J., Ko, S. Y., Park, J.-O. and Park, S., 2015. Effect of chitosan coating on a bacteria-based alginate microrobot. Biotechnology and Bioengineering. 112, 769-776.
Venkateswaran, K., Moser, D. P., Dollhopf, M. E., Lies, D. P., Saffarini, D. A., MacGregor, B. J., Ringelberg, D. B., White, D. C., Nishijima, M., Sano, H., Burghardt, J., Stackebrandt, E. and Nealson, K. H., 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. International Journal of Systematic and Evolutionary Microbiology. 49, 705-724.
Wang, H.-Y., Bernarda, A., Huang, C.-Y., Lee, D.-J. and Chang, J.-S., 2011. Micro-sized microbial fuel cell: A mini-review. Bioresource Technology. 102, 235-243.
Wang, H. Y. and Su, J. Y., 2013a. Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresource Technology. 145, 271-274.
Wei, J., Liang, P. and Huang, X., 2011. Recent progress in electrodes for microbial fuel cells. Bioresour Technol. 102, 9335-9344.
Yuan, L. and He, Y., 2013. Effect of surface charge of PDDA-protected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction. Analyst. 138, 539-545.
Chapter 2
Amici, E., Tetradis-Meris, G., de Torres, P. and Jousse, F., 2008. Alginate gelation in microfluidic channels. Food Hydrocolloids. 22, 97-104.
An, H. Z., Helgeson, M. E. and Doyle, P. S., 2012. Nanoemulsion Composite Microgels for Orthogonal Encapsulation and Release. Advanced Materials. 24, 3838-3844.
Andersson, J., Rosenholm, J., Areva, S. and Lindén, M., 2004. Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices. Chemistry of Materials. 16, 4160-4167.
Babak, V. G., Skotnikova, E. A., Lukina, I. G., Pelletier, S., Hubert, P. and Dellacherie, E., 2000. Hydrophobically associating alginate derivatives: Surface tension properties of their mixed aqueous solutions with oppositely charged surfactants. Journal of Colloid and Interface Science. 225, 505-510.
Bashir, S., Rees, J. M. and Zimmerman, W. B., 2011. Simulations of microfluidic droplet formation using the two-phase level set method. Chemical Engineering Science. 66, 4733-4741.
Beck-Broichsitter, M., Schweiger, C., Schmehl, T., Gessler, T., Seeger, W. and Kissel, T., 2012. Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery. Journal of Controlled Release. 158, 329-335.
Carrier, O., Funfschilling, D. and Li, H. Z., 2014. Effect of the fluid injection configuration on droplet size in a microfluidic T junction. Phys Rev E Stat Nonlin Soft Matter Phys. 89, 1-6.
Chang-Hyung, C., Jae-Hoon, J., Young Woo, R., Dong-Pyo, K., Sang-Eun, S. and Chang-Soo, L., 2007. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomedical Microdevices. 9, 855-862.
Chemistry-in-your-cupboard. (2016). "The chemistry behind Gaviscon." from http://www.rsc.org/learn-chemistry/resources/chemistry-in-your-cupboard/gaviscon/4.
Chen, Y. Y., Chen, Z. M. and Wang, H. Y., 2012. Enhanced fluorescence detection using liquid-liquid extraction in a microfluidic droplet system. Lab on a Chip. 12, 4569-4575.
Christopher, G. F., Noharuddin, N. N., Taylor, J. A. and Anna, S. L., 2008. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys Rev E Stat Nonlin Soft Matter Phys. 78, 1-12.
Chuah, A. M., Kuroiwa, T., Kobayashi, I., Zhang, X. and Nakajima, M., 2009. Preparation of uniformly sized alginate microspheres using the novel combined methods of microchannel emulsification and external gelation. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 351, 9-17.
De Menech, M., Garstecki, P., Jousse, F. and Stone, H. A., 2008. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics. 595, 141-161.
Dendukuri, D. and Doyle, P. S., 2009. The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics. Advanced Materials. 21, 4071-4086.
Duffy, D. C., McDonald, J. C., Schueller, O. J. A. and Whitesides, G. M., 1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry. 70, 4974-4984.
Ebbert, M. A., Marlowe, J. L. and Burkholder, J. J., 2003. Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J Invertebr Pathol. 83, 37-45.
Ganan-Calvo, A. M. and Gordillo, J. M., 2001. Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett. 87, 274501.
Garstecki, P., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M., 2006. Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab on a Chip. 6, 437-446.
Glawdel, T., Elbuken, C. and Ren, C. L., 2012a. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys Rev E Stat Nonlin Soft Matter Phys. 85, 1-9.
Glawdel, T., Elbuken, C. and Ren, C. L., 2012b. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Physical Review E. 85.
Guillot, P. and Colin, A., 2005. Stability of parallel flows in a microchannel after a T junction. Phys Rev E Stat Nonlin Soft Matter Phys. 72, 1-4.
Gupta, A. and Kumar, R., 2010a. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluidics and Nanofluidics. 8, 799-812.
Gupta, A. and Kumar, R., 2010b. Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect. Physics of Fluids. 22, 1-11.
Gupta, A., Murshed, S. M. S. and Kumar, R., 2009. Droplet formation and stability of flows in a microfluidic T-junction. Applied Physics Letters. 94, 1-3.
Haihu, L. and Yonghao, Z., 2009. Droplet formation in a T-shaped microfluidic junction. Journal of Applied Physics. 106, 1-8.
Hoang, P. H. and Dien, L. Q., 2014. Fast synthesis of an inorganic-organic block copolymer in a droplet-based microreactor. Rsc Advances. 4, 8283-8288.
Huang, K.-S., Lin, Y.-S., Yang, C.-H., Tsai, C.-W. and Hsu, M.-Y., 2011. In situ synthesis of twin monodispersed alginate microparticles. Soft Matter. 7, 6713-6718.
Huang, K. S., Yang, C. H., Kung, C. P., Grumezescu, A. M., Ker, M. D., Lin, Y. S. and Wang, C. Y., 2014. Synthesis of uniform core-shell gelatin-alginate microparticles as intestine-released oral delivery drug carrier. Electrophoresis. 35, 330-336.
Husny, J. and Cooper-White, J. J., 2006. The effect of elasticity on drop creation in T-shaped microchannels. Journal of Non-Newtonian Fluid Mechanics. 137, 121-136.
Iwanaga, S., Saito, N., Sanae, H. and Nakamura, M., 2013. Facile fabrication of uniform size-controlled microparticles and potentiality for tandem drug delivery system of micro/nanoparticles. Colloids and Surfaces B-Biointerfaces. 109, 301-306.
Jung, J. H., Choi, C. H., Chung, S., Chung, Y. M. and Lee, C. S., 2009. Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab on a Chip. 9, 2596-2602.
Juza, J., 1997. The pendant drop method of surface tension measurement: Equation interpolating the shape factor tables for several selected planes. Czechoslovak Journal of Physics. 47, 351-357.
Lee, W. L., Widjaja, E. and Loo, S. C., 2012. Designing drug-loaded multi-layered polymeric microparticles. J Mater Sci Mater Med. 23, 81-88.
Leshansky, A. M., Afkhami, S., Jullien, M. C. and Tabeling, P., 2012. Obstructed breakup of slender drops in a microfluidic T junction. Physical Review Letters. 108, 1-5.
Li, X.-B., Li, F.-C., Yang, J.-C., Kinoshita, H., Oishi, M. and Oshima, M., 2012. Study on the mechanism of droplet formation in T-junction microchannel. Chemical Engineering Science. 69, 340-351.
Lingling, S., van den Berg, A. and Eijkel, J. C. T., 2009. Capillary instability, squeezing, and shearing in head-on microfluidic devices. Journal of Applied Physics. 106, 1-7.
Link, D. R., Anna, S. L., Weitz, D. A. and Stone, H. A., 2004. Geometrically mediated breakup of drops in microfluidic devices. Physical Review Letters. 92, 1-4.
Nicheng, C., Jizhou, W., Hanmei, J. and Lichun, D., 2012. CFD Simulation of Droplet Formation in a Wide-type Microfluidic T-junction. Journal of Dispersion Science and Technology. 33, 1635-1641.
Nisisako, T. and Torii, T., 2008. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab on a Chip. 8, 287-293.
Nunes, J. K., Tsai, S. S., Wan, J. and Stone, H. A., 2013. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. J Phys D Appl Phys. 46, 1-20.
Parenteau-Bareil, R., Gauvin, R. and Berthod, F., 2010. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials. 3, 1863-1887.
RheoSense-Inc. (2016). "microVISC™Portable, Small Sample Viscometer." from http://www.rheosense.com/products/viscometers/microvisc/overview.
Selimović, Š., Oh, J., Bae, H., Dokmeci, M. and Khademhosseini, A., 2012. Microscale Strategies for Generating Cell-Encapsulating Hydrogels. Polymers. 4, 1554-1579.
Tan, W.-H. and Takeuchi, S., 2007. Monodisperse alginate hydrogel microbeads for cell encapsulation. Advanced Materials. 19, 2696-2701.
Thorsen, T., Roberts, R. W., Arnold, F. H. and Quake, S. R., 2001. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters. 86, 4163-4166.
Tice, J. D., Song, H., Lyon, A. D. and Ismagilov, R. F., 2003. Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers. Langmuir. 19, 9127-9133.
Umbanhowar, P. B., Prasad, V. and Weitz, D. A., 1999. Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream. Langmuir. 16, 347-351.
van der Graaf, S., Nisisako, T., Schroën, C. G. P. H., van der Sman, R. G. M. and Boom, R. M., 2006. Lattice Boltzmann Simulations of Droplet Formation in a T-Shaped Microchannel. Langmuir. 22, 4144-4152.
Vladisavljevic, G. T., Khalid, N., Neves, M. A., Kuroiwa, T., Nakajima, M., Uemura, K., Ichikawa, S. and Kobayashi, I., 2013. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews. 65, 1626-1663.
Wägli, P., Chang, Y.-C., Homsy, A., Hvozdara, L., Herzig, H. P. and de Rooij, N. F., 2013. Microfluidic Droplet-Based Liquid–Liquid Extraction and On-Chip IR Spectroscopy Detection of Cocaine in Human Saliva. Analytical Chemistry. 85, 7558-7565.
Wan, J., 2012. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery. Polymers. 4, 1084-1108.
Watthanaphanit, A. and Saito, N., 2013. Effect of polymer concentration on the depolymerization of sodium alginate by the solution plasma process. Polymer Degradation and Stability. 98, 1072-1080.
Wehking, J. D., Gabany, M., Chew, L. and Kumar, R., 2014. Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction. Microfluidics and Nanofluidics. 16, 441-453.
Weiner, A. A., Moore, M. C., Walker, A. H. and Shastri, V. P., 2008. Modulation of protein release from photocrosslinked networks by gelatin microparticles. Int J Pharm. 360, 107-114.
Xu, J. H., Li, S. W., Tan, J. and Luo, G. S., 2008. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluidics and Nanofluidics. 5, 711-717.
Xu, J. H., Li, S. W., Tan, J., Wang, Y. J. and Luo, G. S., 2006. Preparation of highly monodisperse droplet in a T-junction microfluidic device. Aiche Journal. 52, 3005-3010.
Yang, C. H., Huang, K. S., Grumezescu, A. M., Wang, C. Y., Tzeng, S. C., Chen, S. Y., Lin, Y. H. and Lin, Y. S., 2014. Synthesis of uniform poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) microspheres using a microfluidic chip for comparison. Electrophoresis. 35, 316-322.
Yang, C. H., Wang, C. Y., Huang, K. S., Kung, C. P., Chang, Y. C. and Shaw, J. F., 2014. Microfluidic one-step synthesis of Fe3O4-chitosan composite particles and their applications. International Journal of Pharmaceutics. 463, 155-160.
Yang, S., Xinghua, G., Longqing, C., Min, Z., Jingyun, M., Xixiang, Z. and Jianhua, Q., 2013. High throughput generation and trapping of individual agarose microgel using microfluidic approach. Microfluidics and Nanofluidics. 15, 467-474.
Yeh, C.-H., Zhao, Q., Lee, S.-J. and Lin, Y.-C., 2009. Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles. Sensors and Actuators a-Physical. 151, 231-236.
Yeom, S. and Lee, S. Y., 2011. Size prediction of drops formed by dripping at a micro T-junction in liquid-liquid mixing. Experimental Thermal and Fluid Science. 35, 387-394.
Yu, L., Chen, M. C. W. and Cheung, K. C., 2010. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab on a Chip. 10, 2424-2432.
Zhao, H., Xu, J.-H., Dong, P.-F. and Luo, G.-S., 2013. A novel microfluidic approach for monodispersed chitosan microspheres with enhanced autofluorescence. Chemical Engineering Journal. 215, 784-790.
Zhu, Y. and Fang, Q., 2013. Analytical detection techniques for droplet microfluidics—A review. Analytica Chimica Acta. 787, 24-35.
Chapter 3
Archakunakorn, S., Charoenrat, N., Khamsakhon, S., Pongtharangkul, T., Wongkongkatep, P., Suphantharika, M. and Wongkongkatep, J., 2015. Emulsification efficiency of adsorbed chitosan for bacterial cells accumulation at the oil–water interface. Bioprocess and Biosystems Engineering. 38, 701-709.
Birmpa, A., Vantarakis, A., Paparrodopoulos, S., Whyte, P. and Lyng, J., 2014. Efficacy of Three Light Technologies for Reducing Microbial Populations in Liquid Suspensions. BioMed Research International. 2014, 1-9.
Busscher, H. J. and van der Mei, H. C., 2006. Microbial Adhesion in Flow Displacement Systems. Clinical Microbiology Reviews. 19, 127-141.
Chow, T. S., 1998. Wetting of rough surfaces. Journal of Physics: Condensed Matter. 10, L445-L451.
Christopher, G. F., Noharuddin, N. N., Taylor, J. A. and Anna, S. L., 2008. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys Rev E Stat Nonlin Soft Matter Phys. 78, 1-12.
Davidson, C. A. B. and Lowe, C. R., 2004. Optimisation of polymeric surface pre-treatment to prevent bacterial biofilm formation for use in microfluidics. Journal of Molecular Recognition. 17, 180-185.
Duffy, D. C., McDonald, J. C., Schueller, O. J. A. and Whitesides, G. M., 1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry. 70, 4974-4984.
Ebbert, M. A., Marlowe, J. L. and Burkholder, J. J., 2003. Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J Invertebr Pathol. 83, 37-45.
Favre, A., Hajnsdorf, E., Thiam, K. and Caldeira de Araujo, A., 1985. Mutagenesis and growth delay induced in Escherichia coli by near-ultraviolet radiations. Biochimie. 67, 335-342.
Glawdel, T., Elbuken, C. and Ren, C. L., 2012a. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys Rev E Stat Nonlin Soft Matter Phys. 85, 1-9.
Guillot, P. and Colin, A., 2005. Stability of parallel flows in a microchannel after a T junction. Phys Rev E Stat Nonlin Soft Matter Phys. 72, 1-4.
Gupta, A. and Kumar, R., 2010b. Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect. Physics of Fluids. 22, 1-11.
Gupta, A., Murshed, S. M. S. and Kumar, R., 2009. Droplet formation and stability of flows in a microfluidic T-junction. Applied Physics Letters. 94, 1-3.
Hadjoudja, S., Deluchat, V. and Baudu, M., 2010. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Journal of Colloid and Interface Science. 342, 293-299.
Haihu, L. and Yonghao, Z., 2009. Droplet formation in a T-shaped microfluidic junction. Journal of Applied Physics. 106, 1-8.
Hoerter, J., Eisenstark, A. and Touati, D., 1989. Mutations by near-ultraviolet radiation in Escherichia coli strains lacking superoxide dismutase. Mutat Res. 215, 161-165.
Hunter, R. J., 2013. Zeta potential in colloid science: principles and applications, Academic press.
Husny, J. and Cooper-White, J. J., 2006. The effect of elasticity on drop creation in T-shaped microchannels. Journal of Non-Newtonian Fluid Mechanics. 137, 121-136.
Khaleduzzaman, S. S., Mahbubul, I. M., Shahrul, I. M. and Saidur, R., 2013. Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. International Communications in Heat and Mass Transfer. 49, 110-114.
Kim, S. K., Lim, H., Chung, T. D. and Kim, H. C., 2006. A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis. Sensors and Actuators B: Chemical. 115, 212-219.
Kramer, G. F. and Ames, B. N., 1987. Oxidative mechanisms of toxicity of low-intensity near-UV light in Salmonella typhimurium. Journal of Bacteriology. 169, 2259-2266.
Lee, T.-H., Chang, J.-S. and Wang, H.-Y., 2013. Rapid and in Vivo Quantification of Cellular Lipids in Chlorella vulgaris Using Near-Infrared Raman Spectrometry. Analytical Chemistry. 85, 2155-2160.
Liang, Z., Ge, F., Zeng, H., Xu, Y., Peng, F. and Wong, M., 2013. Influence of cetyltrimethyl ammonium bromide on nutrient uptake and cell responses of Chlorella vulgaris. Aquatic Toxicology. 138–139, 81-87.
Mori, S., Okamoto, H., Hara, T. and Aso, K., 1980. An improved method of determining the zeta-potential of mineral particles by micro-electrophoresis. Fine Particles Processing", P. Somasundaran, ed., Society of Mining Engineers of AIME, New York. 632-651.
Rühs, P. A., Böcker, L., Inglis, R. F. and Fischer, P., 2014. Studying bacterial hydrophobicity and biofilm formation at liquid–liquid interfaces through interfacial rheology and pendant drop tensiometry. Colloids and Surfaces B: Biointerfaces. 117, 174-184.
Ramé-hart. (2016). "Glossary of Surface Science Terms." from http://www.ramehart.com/glossary.htm#Adhesion.
Smoluchowski, M., 1924. Contribution à la théorie de l'endosmose électrique et de quelques phénomènes corrélatifs. Pisma Mariana Smoluchowskiego. 1, 403-420.
Song, J. and Kim, M. W., 2011. Excess Charge Density and its Relationship with Surface Tension Increment at the Air−Electrolyte Solution Interface. The Journal of Physical Chemistry B. 115, 1856-1862.
Thorsen, T., Roberts, R. W., Arnold, F. H. and Quake, S. R., 2001. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters. 86, 4163-4166.
Turner, M. A. and Webb, R. B., 1981. Comparative mutagenesis and interaction between near-ultraviolet (313- to 405-nm) and far-ultraviolet (254-nm) radiation in Escherichia coli strains with differing repair capabilities. Journal of Bacteriology. 147, 410-417.
Vladescu, I. D., Marsden, E. J., Schwarz-Linek, J., Martinez, V. A., Arlt, J., Morozov, A. N., Marenduzzo, D., Cates, M. E. and Poon, W. C. K., 2014. Filling an Emulsion Drop with Motile Bacteria. Physical Review Letters. 113, 1-10.
Wang, R., 2013. Nanoparticles influence droplet formation in a T-shaped microfluidic. J Nanopart Res. 15, 1-9.
Xu, F. and Vostal, J. G., 2014. Inactivation of bacteria via photosensitization of vitamin K3 by UV-A light. FEMS Microbiol Lett. 358, 98-105.
Xu, J. H., Li, S. W., Tan, J., Wang, Y. J. and Luo, G. S., 2006. Preparation of highly monodisperse droplet in a T-junction microfluidic device. Aiche Journal. 52, 3005-3010.
Yee, N. and Fein, J., 2001. Cd adsorption onto bacterial surfaces: A universal adsorption edge? Geochimica et Cosmochimica Acta. 65, 2037-2042.
Yeom, S. and Lee, S. Y., 2011. Size prediction of drops formed by dripping at a micro T-junction in liquid-liquid mixing. Experimental Thermal and Fluid Science. 35, 387-394.
Ying, G.-G., 2006. Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International. 32, 417-431.
Yuan, Q. C. and Williams, R. A., 2014. Precision emulsification for droplet and capsule production. Advanced Powder Technology. 25, 122-135.
Chapter 4
Andrade, C., Abdalla, D. S. P., Oliveira, M. D., Faulin, T. and Hering, V., 2011. Biosensors for detection of Low-Density Lipoprotein and its modified forms, INTECH Open Access Publisher.
Baudler, A., Schmidt, I., Langner, M., Greiner, A. and Schroder, U., 2015. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy & Environmental Science. 8, 2048-2055.
Betz, J. F., Cheng, Y., Tsao, C.-Y., Zargar, A., Wu, H.-C., Luo, X., Payne, G. F., Bentley, W. E. and Rubloff, G. W., 2013. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces. Lab on a Chip. 13, 1854-1858.
Bretschger, O., Obraztsova, A., Sturm, C. A., Chang, I. S., Gorby, Y. A., Reed, S. B., Culley, D. E., Reardon, C. L., Barua, S., Romine, M. F., Zhou, J., Beliaev, A. S., Bouhenni, R., Saffarini, D., Mansfeld, F., Kim, B.-H., Fredrickson, J. K. and Nealson, K. H., 2007. Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants. Applied and Environmental Microbiology. 73, 7003-7012.
Castro, L., Vera, M., Muñoz, J. Á., Blázquez, M. L., González, F., Sand, W. and Ballester, A., 2014. Aeromonas hydrophila produces conductive nanowires. Research in Microbiology. 165, 794-802.
Chen, B.-Y., Chen, W.-M., Kuo, H.-Y. and Hsueh, C.-C., 2009. Comparative assessment upon dye removal capability of indigenous bacterial strains from Lanyang Plain in northeast Taiwan. Journal of Hazardous Materials. 161, 526-533.
Chen, B.-Y., Wang, Y.-M. and Ng, I. S., 2011. Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri. Bioresource Technology. 102, 1159-1165.
Chen, B.-Y., Zhang, M.-M., Chang, C.-T., Ding, Y., Lin, K.-L., Chiou, C.-S., Hsueh, C.-C. and Xu, H., 2010. Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresource Technology. 101, 4737-4741.
Cheng, S. and Logan, B. E., 2011. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour Technol. 102, 4468-4473.
Clauwaert, P., Aelterman, P., De Schamphelaire, L., Carballa, M., Rabaey, K. and Verstraete, W., 2008. Minimizing losses in bio-electrochemical systems: the road to applications. Applied Microbiology and Biotechnology. 79, 901-913.
Cui, H. F., Du, L., Guo, P. B., Zhu, B. and Luong, J. H. T., 2015. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. Journal of Power Sources. 283, 46-53.
Ehsani, A., Mahjani, M. G. and Jafarian, M., 2011. Electrochemical impedance spectroscopy study on intercalation and anomalous diffusion of AlCl_4^-ions into graphite in basic molten salt. Turkish Journal of Chemistry. 35, 735-743.
El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H. and Gorby, Y. A., 2010. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences. 107, 18127-18131.
Ge, L., Yao, C., Ren, J., Wang, W., Ji, J., Jia, Y. and Ba, L., 2013. Multilayered hollow polyelectrolyte capsules improved performances in microbial fuel cells (MFCs). Polymer. 54, 292-296.
Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S. i., Logan, B., Nealson, K. H. and Fredrickson, J. K., 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America. 103, 11358-11363.
Guo, K., Freguia, S., Dennis, P. G., Chen, X., Donose, B. C., Keller, J., Gooding, J. J. and Rabaey, K., 2013. Effects of Surface Charge and Hydrophobicity on Anodic Biofilm Formation, Community Composition, and Current Generation in Bioelectrochemical Systems. Environmental Science & Technology. 47, 7563-7570.
He, Y. H., Liu, Z. D., Xing, X. H., Li, B. M., Zhang, Y. H., Shen, R. X., Zhu, Z. B. and Duan, N., 2015. Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell. Biochemical Engineering Journal. 94, 39-44.
Hentzer, M. and Givskov, M., 2003. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. Journal of Clinical Investigation. 112, 1300-1307.
Hou, H., Li, L., Ceylan, C. Ü., Haynes, A., Cope, J., Wilkinson, H. H., Erbay, C., Figueiredo, P. d. and Han, A., 2012. A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens. Lab on a Chip. 12, 1-11.
Iwamoto, T., Tani, K., Nakamura, K., Suzuki, Y., Kitagawa, M., Eguchi, M. and Nasu, M., 2000. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiology Ecology. 32, 129-141.
Junxian, H., Zhongliang, L. and Peiyuan, Z., 2013. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. Journal of Power Sources. 224, 139-144.
Karunathilaka, S., Hampson, N., Leek, R. and Sinclair, T., 1981. The impedance of the alkaline zinc-manganese dioxide cell. i. variation with state of charge. Journal of Applied Electrochemistry. 11, 365-372.
Kawai, M., Matsutera, E., Kanda, H., Yamaguchi, N., Tani, K. and Nasu, M., 2002. 16S Ribosomal DNA-Based Analysis of Bacterial Diversity in Purified Water Used in Pharmaceutical Manufacturing Processes by PCR and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology. 68, 699-704.
Kim, S. K., Lim, H., Chung, T. D. and Kim, H. C., 2006. A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis. Sensors and Actuators B: Chemical. 115, 212-219.
Krishnaraj, N. R., Karthikeyan, R., Berchmans, S., Chandran, S. and Pal, P., 2013. Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells. Electrochimica Acta. 112, 465-472.
Lee, J. W. and Kjeang, E., 2010. A perspective on microfluidic biofuel cells. Biomicrofluidics. 4, 1-12.
Li, C., Zhang, L., Ding, L., Ren, H. and Cui, H., 2011. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosensors & Bioelectronics. 26, 4169-4176.
Lin, X., Nishio, K., Konno, T. and Ishihara, K., 2012. The effect of the encapsulation of bacteria in redox phospholipid polymer hydrogels on electron transfer efficiency in living cell-based devices. Biomaterials. 33, 8221-8227.
Logan, B., Cheng, S., Watson, V. and Estadt, G., 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology. 41, 3341-3346.
Logan, B. E., 2008. Microbial fuel cells, John Wiley & Sons.
Logan, B. E., 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro. 7, 375-381.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K., 2006. Microbial fuel cells: methodology and technology. Environmental Science & Technology. 40, 5181-5192.
Lovley, D. R., Stolz, J. F., Nord, G. L. and Phillips, E. J. P., 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 330, 252-254.
Mahadevan, A., Gunawardena, D. A. and Fernando, S., 2014. Biochemical and Electrochemical Perspectives of the Anode of a Microbial Fuel Cell. Technology and Application of Microbial Fuel Cells. 13-32.
Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A. and Bond, D. R., 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences. 105, 3968-3973.
Mink, J. E. and Hussain, M. M., 2013. Sustainable Design of High-Performance Microsized Microbial Fuel Cell with Carbon Nanotube Anode and Air Cathode. ACS Nano. 7, 6921-6927.
Mink, J. E., Qaisi, R. M., Logan, B. E. and Hussain, M. M., 2014. Energy harvesting from organic liquids in micro-sized microbial fuel cells. NPG Asia Materials. 6, 1-5.
Nishio, K., Kimoto, Y., Song, J., Konno, T., Ishihara, K., Kato, S., Hashimoto, K. and Nakanishi, S., 2013. Extracellular Electron Transfer Enhances Polyhydroxybutyrate Productivity in Ralstonia eutropha. Environmental Science & Technology Letters. 1, 40-43.
Rabaey, K. and Verstraete, W., 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23, 291-298.
Rismani-Yazdi, H., Carver, S. M., Christy, A. D. and Tuovinen, O. H., 2008. Cathodic limitations in microbial fuel cells: an overview. Journal of Power Sources. 180, 683-694.
Venkateswaran, K., Moser, D. P., Dollhopf, M. E., Lies, D. P., Saffarini, D. A., MacGregor, B. J., Ringelberg, D. B., White, D. C., Nishijima, M., Sano, H., Burghardt, J., Stackebrandt, E. and Nealson, K. H., 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. International Journal of Systematic and Evolutionary Microbiology. 49, 705-724.
Wang, H. Y. and Su, J. Y., 2013a. Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresource Technology. 145, 271-274.
Wang, H. Y. and Su, J. Y., 2013b. Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresour Technol. 145, 271-274.
Wang, X., Gao, N. and Zhou, Q., 2013. Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems. Biosens Bioelectron. 43, 264-267.
Wang, Y., Zhao, C.-e., Sun, D., Zhang, J.-R. and Zhu, J.-J., 2013. A Graphene/Poly(3,4-ethylenedioxythiophene) Hybrid as an Anode for High-Performance Microbial Fuel Cells. Chempluschem. 78, 823-829.
Watson, V. J. and Logan, B. E., 2011. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications. 13, 54-56.
Wei, J., Liang, P. and Huang, X., 2011. Recent progress in electrodes for microbial fuel cells. Bioresour Technol. 102, 9335-9344.
Yang, X.-Y., Tian, G., Jiang, N. and Su, B.-L., 2012. Immobilization technology: a sustainable solution for biofuel cell design. Energy & Environmental Science. 5, 5540-5563.
Yuan, Y., Zhou, S., Liu, Y. and Tang, J., 2013. Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells. Environmental Science & Technology. 47, 14525-14532.
Yueh, P.-L., Chen, B.-Y. and Hsueh, C.-C., 2015. Unraveling Biostimulation of Decolorized Mediators for Microbial Fuel Cell-Aided Textile Dye Decontamination. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering. 10, 12-18.
Zhang, M. M., Chen, W. M., Chen, B. Y., Chang, C. T., Hsueh, C. C., Ding, Y., Lin, K. L. and Xu, H., 2010. Comparative study on characteristics of azo dye decolorization by indigenous decolorizers. Bioresour Technol. 101, 2651-2656.
Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P. and Herrmann, I., 2006. Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells. Environmental Science & Technology. 40, 5193-5199.
Zhu, Y., Ji, J., Ren, J., Yao, C. and Ge, L., 2014. Conductive multilayered polyelectrolyte films improved performance in microbial fuel cells (MFCs). Colloids and Surfaces a-Physicochemical and Engineering Aspects. 455, 92-96.