簡易檢索 / 詳目顯示

研究生: 林家賢
Lin, Jia-Hsien
論文名稱: 有機鹽類對水溶性高分子與十二烷基硫酸鈉界面活性劑間交互作用力影響之研究
Effects of Organic Salts on the Interaction between Water-soluble Polymers and Sodium Dodecylsulfate
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 84
中文關鍵詞: 十二烷基硫酸鈉微胞化離子液體溴化四級胺鹽有機鹽聚乙烯吡咯烷酮高分子與界劑間作用力核磁共振螢光光譜
外文關鍵詞: Sodium dodecylsulfate, Micellization, Ionic liquid, Tetraalkylammonium bromides, Organic salts, PVP, Polymer-surfactant interaction, NMR and Pyrene
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用螢光光譜和多種核磁共振技術:一維氫光譜化學位移(1H chemical shift)、脈衝磁場梯度(pulse field gradient, PFG)、縱向弛豫時間(T1 relaxation time)和二維核歐佛豪瑟效應(nuclear Overhauser effect spectroscopy, NOESY)探討有機鹽類對十二烷基硫酸鈉(sodium dodecylsulfate, SDS)界面活性劑自身微胞化行為和SDS與水溶性聚乙烯吡咯烷酮高分子(polyvinylpyrrolidone, PVP)兩者交互作用之影響,其中加入的有機鹽分別是烷基鏈長從甲基至丁基的溴化四級胺鹽(tetraalkylammonium bromides, TAABs)與烷基鏈長為乙基和丁基的離子液體(1-ethyl-3-methylimidazolium tetrafluoroborate, EmimBF4 and 1-butyl-3-methylimidazolium tetrafluoroborate, BmimBF4)。首先,在研究SDS微胞化行為方面,從螢光光譜結果可知添加有機鹽至SDS水溶液中除了能促使SDS微胞的生成外,吸附在微胞上的陽離子亦能影響其微胞特性。若進一步由2D NOESY分析微胞結構可發現,不論是TAA+或是Rmim+陽離子兩者均能強烈地吸附在SDS微胞表面或甚至深入在微胞內部而形成類似混合微胞的結構。此外,根據以PFG NMR測量出的有機陽離子和SDS分子擴散係數的結果分析來看,雖然混合微胞中陽離子的總數量在固定鹽類濃度下隨著SDS濃度增加有上升的趨勢,但單一微胞上所吸附的有機陽離子數量卻逐漸下降。關於有機陽離子吸附在SDS微胞上的影響,從1H化學位移實驗在最靠近SDS頭基CH2質子(-CH2)上的變化結果指出,當加入具有較長烷基鏈段的有機鹽類時,SDS微胞表面上會有較多的水合分子受到陽離子的附著而被推擠至水溶液中,造成只有少數水合分子附著於微胞表面。此外,對於添加有RmimBF4的SDS溶液,在比較不同SDS鏈段上的縱向弛豫時間可推論,當Rmim+離子吸附在SDS微胞表面並推擠掉部分水合分子時,靠近SDS頭基的分子鏈段(-CH2和-CH2)其局部動態運動行為有明顯地受到抑制,但位於微胞內部的鏈段卻影響不大。
    對於PVP高分子與SDS界劑之間作用力關係,我們發現當添加短碳鏈(如EmimBF4、Me4NBr和Et4NBr)和長碳鏈(如BmimBF4、Pr4NBr和Bu4NBr)有機鹽於PVP/SDS溶液中時高分子與界劑有兩種全然不同的複合行為。與傳統無機鹽類功效相似,添加短碳鏈有機鹽能促使SDS分子於PVP高分子上形成類微胞結構。但從2D NOESY進一步分析複合物結構可發現,短碳鏈有機陽離子並非只附著於SDS類微胞表面而亦會深入其內部,這使複合物中高分子與界劑之間的距離變大。然而,當PVP/SDS溶液中添加的有機鹽具有較長烷基鏈段時,SDS界劑與PVP高分子之間的複合行為並沒有因此而促進發生,反而是直到[SDS]/[salt]比值大於某特定值時(BmimBF4, 0.45; Pr4NBr, 0.6 和 Bu4NBr, 1.1)才被觀察到。舉例來說,在[SDS]/[Bu4NBr] < 1.1的條件下,即便PVP/Bu4NBr/SDS溶液中的SDS濃度已高於2.0 mM(純PVP/SDS溶液的臨界叢集濃度),但溶液中卻仍只有Bu4N+-SDS混合微胞的存在。這結果說明添加具有較長烷基鏈段的有機鹽會抑制高分子與界劑之間的作用力。因此,從高分子與界劑在添加不同長碳鏈有機鹽時開始發生複合行為的[SDS]/[salt]比值大小推論,長碳鏈有機陽離子抑制複合物生成的能力順序則是Bu4N+ > Pr4N+ > Bmim+。然而,隨著SDS濃度的增加,當[SDS]/[Bu4NBr]比值大於1.1時,SDS分子除了會開始在PVP高分子上形成類微胞結構外,溶液中仍同時存在著Bu4N+-SDS混合微胞並且持續生成。為了確認Bu4N+離子是否會參與PVP與SDS之間的複合行為,PFG NMR所量測到的Bu4N+離子擴散係數則可證明PVP-(Bu4N+-SDS)三元複合物結構確實存在。此外,由於附著於三元複合物中的Bu4N+離子並不會與PVP高分子靠近,導致Bu4N+離子附著於複合物時會進一步影響複合物的結構。一般而言,PVP高分子在沒有添加鹽類下會穿入SDS類微胞結構內部。然而,當SDS類微胞結構有Bu4N+離子附著於於表面上,高分子則僅會越過複合物表面卻沒有穿入複合物內部。根據以上這些結果,我們提出有機鹽類對高分子與界劑交互作用行為影響的模型外,另外亦可用來進一步釐清在PVP/SDS溶液中何者才是促成界劑在高分子上形成類微胞結構的主要驅動力。

    The effects of two organic salts, tetraalkylammonium bromides (TAABs, alkyl chain from methyl to butyl) and imidazolium-based ionic liquids (1-ethyl-3-methylimidazolium tetrafluoroborate, EmimBF4 and 1-butyl-3-methylimidazolium tetrafluoroborate, BmimBF4) on the micellization of sodium dodecylsulfate (SDS) and the association behavior of SDS with polyvinylpyrrolidone (PVP) in aqueous solution both have been investigated by using pyrene solubilization experiment and several nuclear magnetic resonance (NMR) techniques. Firstly, for the SDS micellization behavior, the results of pyrene solubilization indicate that adding organic salts to the SDS solution can not only promote the formation of SDS micelle but also modify the micelle properties. The spatial arrangements and compositions of organic cations bound on the SDS micelles are respectively investigated by two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) and pulse field gradient (PFG) NMR experiments. The TAA+ and Rmim+ organic cations are confirmed to firmly attach to the micelle surface or even reside at the hydrophobic micelle core, forming the mixed micelle structure. The compositions of the mixed micelle, which are calculated by measuring the self-diffusion of SDS, TAA+ and Rmim+ cations, were found to strongly relate to the concentration of SDS. When the number of SDS micelle increases with increasing the [SDS], the organic cations in the SDS solution at constant [salt] are mostly bound with the SDS micelles, but the number of micelle-bound ions on each SDS becomes less. Corresponding to the microstructure of mixed micelle, the micelle-bound organic ions could further remove water from the hydration shell of SDS micelle. The degree of hydration on the SDS micelle surface bound with various organic cations can be compared by determining the chemical shift change of SDS α-CH2 protons. When the SDS micelles bound with organic cations having longer chain, a more obvious upfield shift of SDS α-CH2 protons is observed, indicating that the surface of mixed micelle is dehydrated more pronounced. Moreover, in terms of 1H T1 relaxation, the insertion of Rmim+ ions into the SDS micelle are found to greatly restrict the fast motion of SDS -CH2 and -CH2 segments, whereas the central carbons and the terminal CH3 group of SDS are only slightly affected.
    Two distinct complexation behaviors of SDS with PVP are found in the PVP/SDS solution containing the short-chain (EmimBF4, Me4NBr and Et4NBr) and long-chain (BmimBF4, Pr4NBr and Bu4NBr) organic salts. The formation of PVP-SDS complex promoted by the presence of short-chain organic salts is similar to that caused by inorganic salts. By means of 2D NOESY experiment, these short-chain organic cations are found to be incorporated into the PVP-bound SDS aggregates, making the distance between PVP and SDS in the ternary complex become longer. However, the PVP-SDS interaction in the presence of long-chain organic salts does not occur until the [SDS]/[salt] ratio > a specific value (for BmimBF4, 0.45; for Pr4NBr, 0.6 and for Bu4NBr, 1.1). For example, as the [SDS]/[Bu4NBr] ratio < 1.1, only Bu4N+-SDS mixed micelles form in the PVP/Bu4NBr/SDS solution, and the mixed micelles do not interact with PVP even though the [SDS] > 2.0 mM (the regular CAC). Since the [SDS]/[Bu4NBr] ratio for the occurrence of PVP-SDS interaction is the highest, Bu4N+ ion is considered to have the highest ability to restrict the formation of PVP-SDS complex. When the [SDS]/[Bu4NBr] ratio > 1.1, the PVP-induced SDS aggregate is detected along with the mixed micellization between SDS and Bu4NBr. Moreover, the Bu4N+ cations binding with the ternary PVP-(Bu4N+-SDS) complex had been observed by measuring their self-diffusion coefficient using PFG NME experiment. Note that, the PVP segments in the ternary PVP-(Bu4N+-SDS) complex is apart from the bound Bu4N+ cations, and the complex microstructure is thus changed. Unlike the penetration of PVP into the SDS aggregates in the pure PVP/SDS solution, the PVP chains can only thread through the surface of PVP-(Bu4N+-SDS) complex. Based on the complexation behavior of SDS with PVP in the presence of organic salts, we not only proposed an interaction model for the role of organic cations on the associating behavior between PVP and SDS but also suggested some necessary driving forces for the occurrence of polymer-surfactant interaction.

    CONTENTS ABSTRACT (CHINESE) / I ABSTRACT (ENGLISH) / III ACKNOWLEDGEMENT / V CONTENTS/ VIII LIST OF TABLES/ X LIST OF FIGURES/ XI Chapter 1 Introduction / 1 1.1 Ion effects on SDS micellization / 1 1.2 Factors for the association behavior of SDS with neutral water-soluble polymers / 8 1.3 Ion effects on interaction between neutral water-soluble polymer and SDS / 11 2 Materials and Experiment / 15 2.1 Materials / 15 2.2 Pyrene solubilization measurements / 17 2.3 Nuclear magnetic resonance experiments / 17 3 Effects of organic salts on SDS micellization / 19 3.1 CMC values and micellar micropolarity of salt/SDS systems / 19 3.2 Salt effects on SDS micelle hydration as studied by 1H chemical shift / 22 3.3 Binding affinity of TAA+ and Rmim+ ion on SDS micelle / 26 3.4 Location of TAA+ and Rmim+ ions in mixed SDS micelles as studied by 2D NOESY NMR / 31 3.5 Molecular dynamics motion of SDS alkyl segment in ILs-mixed SDS micelles as studied by 1H spin-lattice relaxation experiment / 36 3.6 Specific ion effect on SDS micellization / 40 4 Effects of organic salts on PVP-SDS interactions / 43 4.1 Association behaviors among PVP, SDS and organic ions / 43 4.2 Microstructure of PVP-bound SDS aggregate with organic salt / 50 4.3 Binding behavior of organic ion and SDS in PVP/organic salt/SDS solution / 59 5 Effects of organic salts on the association of SDS with water-soluble polymers / 65 5.1 Complexation behaviors between polymers and SDS with organic salts as studied by pyrene fluorescence / 65 5.2 The necessary driving forces for the PVP-SDS interaction / 69 6 Conclusion / 77 REFERENCES / 79

    [1] Jönsson, B.; Wennerstroem, H.; Halle, B. J. Phys. Chem. 1980, 84, 2179-2185.
    [2] Stigter, D J. Phys. Chem. 1975, 79, 1008-1014.
    [3] Corrin, M. L.; Harkins, W. D. J. Am. Chem. Soc., 1947, 69, 683-688.
    [4] Williams, R. J.; Phillips, J. N.; Mysels, K. J. Trans. Faraday Soc. 1955, 51, 728-737.
    [5] Emerson, M. F.; Holtzer, A. J. Phys. Chem. 1965, 69, 3718-3721.
    [6] Mysels, K. J.; Princen, L. H. J. Phys. Chem. 1959, 63, 1696-1700.
    [7] Mazer, N. A.; Benedek, G. B.; Carey, M. C. J. Phys. Chem. 1976, 80, 1075-1085.
    [8] Yong, C. Y.; Missel, P. J.; Mazer, N. A.; Benedek, G. B.; Carey, M. C. J. Phys. Chem. 1978, 82, 1375-1378.
    [9] Hayashi, S.; Ikeda, S. J. Phys. Chem. 1980, 84, 744-751.
    [10] Lianos, P.; Zana, R. J. Phys. Chem. 1980, 84, 3339-3341.
    [11] Ikeda, S.; Hayashi, S.; Imae, T. J. Phys. Chem. 1981, 85, 106-112.
    [12] Turro, N. J.; Yekta, A. J. Am. Chem. Soc., 1978, 100, 5951-5952.
    [13] Ellena, J. F.; Dominey, N.; Cafiso, D. S. J. Phys. Chem. 1987, 91,131-137.
    [14] Zhao, J.; Fung, B. M. Langmuir 1993, 9, 1228-1231.
    [15] Mukerjee, P.; Mysels, K.J. and Kapauan, P. J. Phys. Chem. 1967, 71, 4166-4175.
    [16] Marcus, Y. A Biophys. Chem. 1994, 51, 111-127.
    [17] Kumar, S.; Sharma, D.; Kabir-ud-Din Langmuir 2000, 16, 6821-6824.
    [18] Kumar, S.; Aswal V. K.; Zaqvi, A. Z.; Goyal, P. S.; Kabir-ud-Din Langmuir 2001, 17, 2049-2551.
    [19] Kumar, S.; Sharma, D.; Khan, Z. A.; Kabir-ud-Din Langmuir 2001, 17, 5813-5816.
    [20] Kumar, S.; Sharma, D.; Khan, Z. A.; Kabir-ud-Din Langmuir 2003, 19, 3539-3541.
    [21] Kabir-ud-Din; Sharma, D.; Khan, Z. A.; Aswal V. K.; Kumar, S. J. Colloid Interface Sci. 2006, 302, 315-321.
    [22] Aswal, V. K.; Kohlbrecher, J. Chem. Phys. Lett. 2006, 424, 91-96.
    [23] Mata, J.; Varade, D.; Ghosh, G.; Bahadur, P. Colloids Surf., A 2004, 245, 69-73.
    [24] Yu, Z.-J.; Xu, G. J. Phys. Chem. 1989, 93 (21), 7441-7445.
    [25] Bales, B. L.; Zana R. Langmuir 2004, 20, 1579-1581.
    [26] Mitra, D.; Chakraborty, I.; Bhattacharya, S. C.; Moulik, S. P. Langmuir 2007, 23 , 3049-3061.
    [27] Lindenbaum, S.; Boyd, G. E. J. Phys. Chem. 1964, 68, 911-917.
    [28] Welton, T. Chem. Rev. 1999, 99, 2071-2083.
    [29] Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123-150.
    [30] Nakashima, K.; Kubota, F.; Maruyama, T.; Goto, M. Ind. Eng. Chem. Res. 2005, 44, 4368-4372.
    [31] Blesic, M.; Marques, M. H.; Plechkova, N. V.; Seddon, K. R.; Rebelo, L. P. N.; Lopes, A. Green Chem. 2007, 9, 481-490.
    [32] Wang, J.; Wang, H.; Zhang, S.; Zhang, H.; Zhao, Y. J. Phys. Chem. B 2007, 111, 6181-6188.
    [33] Jungnickel, C.; Łuczak, J.; Ranke, J.; Fernández, J. F.; Müller, A.; Thöming, J. Colloids Surf. A 2008, 316, 278-284.
    [34] Smirnova, N. A.; Safonova, E. A. Russ. J. Phys. Chem. A 2010, 84, 1695-1704.
    [35] Vaghela, N. M.; Sastry, N. V.; Aswal, V. K. Colloid Polym. Sci. 2011, 289, 309-322.
    [36] Łuczak, J.; Hupka, J.; Thöming, J.; Jungnickel, C. Colloids Surf. A 2008, 329, 125-133.
    [37] Łuczak, J.; Jungnickel, C.; Joskowska, M.; Thöming, J.; Hupka, J. J. Colloid Interface Sci. 2009, 336, 111-116.
    [38] Vanyúr, R.; Biczók, L.; Miskolczy, Z. Colloids Surf. A 2007, 299 ,256-261.
    [39] Inoue, T.; Ebina, H.; Bin, D.; Zheng, L. J. Colloid Interface Sci. 2007, 314, 236-241.
    [40] Rizvi, S. A. A.; Shamsi, S. A. Anal. Chem. 2006, 78, 7061-7069.
    [41] Zech, O.; Thomaier, S.; Bauduin, P.; Ruck, T.; Touraud, D.; Kunz, W. J. Phys. Chem. B 2009, 113, 465-473.
    [42] Zhou, Y.; Schattka, J. H.; Antonietti, M. Nano Lett. 2004, 4, 477-481.
    [43] Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez M. C. Langmuir 2004, 20, 2191-2198.
    [44] Goodchild, I.; Collier, L.; Millar, S. L.; Prokeš, I.; Lord, J. C. D.; Butts, C. P.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. J. Colloid Interface Sci. 2007, 307, 455-468.
    [45] Behera, K.; Dahiya, P.; Pandey, S. J. Colloid Interface Sci. 2007, 307, 235-245.
    [46] Behera, K.; Pandey, M. D.; Porel, M.; Pandey, S. J. Chem. Phys. 2007, 127, 184501.
    [47] Pramanik, R.; Sarkar, S.; Ghatak, C.; Rao, V. Mandal, G. S.; Sarkar, N. J. Phys. Chem. B 2010, 115, 6957-6963.
    [48] Comelles, F.; Ribosa, I.; González, J. J.; Garcia, M. T. Langmuir 2012, 28, 14522-14530.
    [49] Behera, K.; Om, H.; Pandey, S. J. Phys. Chem. B 2009, 113, 786-793.
    [50] Smirnova, N. A.; Vanin, A. A.; Safonova, E. A.; Pukinsky, I. B.; Anufrikov, Y. A.; Makarov, A. L. J. Colloid Interface Sci. 2009, 336, 793-802.
    [51] Shi, L.; Jing, X.; Gao, H.; Gu, Y.; Zheng L. Colloid Polym. Sci. 2013, 291, 1601-1612.
    [52] Javadian, S.; Nasiri, F.; Heydari, A.; Yousefi, A.; Shahir, A. A. J. Phys. Chem. B 2014, 118, 4140-4150.
    [53] Behera, K.; Pandey, S. J. Phys. Chem. B 2007, 111, 13307-13315.
    [54] Behera, K.; Pandey, S. J. Colloid Interface Sci. 2007, 316, 803-814.
    [55] Rai, R.; Baker, G. A.; Behera, K.; Mohanty, P.; Kurur, N. D.; Pandey, S. Langmuir 2010, 26, 17821-17826.
    [56] Comelles, F.; Ribosa, I.; González, J. J.; Garcia, M. T. J. Colloid Interface Sci. 2014, 125, 44-51.
    [57] Beyaz, A.; Woon, S. O.; Reddy, V. P. Colloids Surf. B 2004, 35, 119-124.
    [58] Pal, A.; Chaudhary, S. Colloids Surf. A 2013, 430, 58-64.
    [59] Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Surfactants and Polymers in Aqueous Solution; John Wiley & Sons, Ltd.: Chichester, U.K., 2003.
    [60] Tadros, T. F. Applied Surfactant: Principle and Applications; Wiley-VCH: Weinheim, Germany, 2005.
    [61] Nystroem, B.; Walderhaug, H.; Hansen, F. K.; Lindman, B. Langmuir 1995, 11, 750-757.
    [62] Schwuger, M. J. J. Colloid Interface Sci. 1973, 43, 491-498.
    [63] Cabane, B. J. Phys. Chem. 1977, 81, 1639-1645.
    [64] Witte, F. M.; Engberts, J. B. F. N. Colloids Surf. 1989, 36, 417-426.
    [65] Brackman, J. C.; Engberts, J. B. F. N. J. Colloid Interface Sci. 1989, 132, 250-255.
    [66] Brackman, J. C.; Engberts, J. B. F. N. Chem. Soc. Rev. 1993, 22, 85-92.
    [67] Nagarajan, R., Colloids Surf. 1985, 3, 1-17.
    [68] Ruckenstein, E., Huber, G., and Hoffmann, H., Langmuir 1987, 3, 382-387.
    [69] Dubin, P. L.; Gruber, J. H.; Xia, J.; Zhang H. J. Colloid Interface Sci. 1992, 148, 35-41.
    [70] Xia, J.; Dubin, P. L.; Kim, Y. J. Phys. Chem. 1992, 96, 6805-6811.
    [71] Chari, K.; Lenhart, W. C. J. Colloid Interface Sci. 1990, 137, 204-216.
    [72] Sesta, B.; Aprano, A. D.; Segre, A. L.; Proietti, N. Langmuir 1997, 13, 6612-6617.
    [73] Wang, G.; Olofsson, G. J. Phys. Chem. 1995, 99, 5588-5596
    [74] Gao, Z.; Wasylishen, R. E.; Kwak, J. C. T. J. Phys. Chem. 1991, 95, 462-467.
    [75] Gjerde, M. I.; Nerdal, W.; Hoiland, H. J. Colloid Interface Sci. 1996, 183, 285-288.
    [76] Roscigno, P.; Asaro, F.; Pellizer, G.; Ortona, O.; Paduano, L. Langmuir 2003, 19, 9638-9644.
    [77] Sartori, R.; Sepulvedat, L.; Quina, F.; Lissi, E.; Abuin, E. Macromolecules 1990, 23, 3878-3881.
    [78] Murata, M.; Arai, H. J. Colloid Interface Sci. 1973, 44, 475-480.
    [79] Minatti, E.; Zanette, D. Colloids Surf. A 1996, 113, 237-246.
    [80] Ghoreishi, S. M.; Li, Y.; Bloor, D. M.; Warr, J.; Wyn-Jones E. Langmuir 1999, 15, 4380-4387.
    [81] Lissi, E. A.; Abuin, E. J. Colloid Interface Sci. 1985, 105, 1-6.
    [82] Sorci, G. A.; Reed, W. F. Langmuir 2002, 18, 353-364.
    [83] Maltesh, C.; Somasundaran, P. Langmuir 1992, 8, 1926-1930.
    [84] Saito, S.; Taniguchi, T.; Kitamura, K. J. Colloid Interface Sci. 1971, 37, 154-164.
    [85] Froehner, S. J.; Belarmino, A.; Zanette, D. Colloids Surf., A 1998, 137, 131-139.
    [86] Zanette, D.; Lima, C. F.; Ruzza, A. A.; Belarmino, A. T. N.; Santos, S. F.; Frescura, V. L. A.; Marconi, D. M. O.; Froehner, S. J. Colloids Surf., A 1999, 147, 89-105.
    [87] Benrraou, B.; Bales, B.; Zana, R. J. Colloid Interface Sci. 2003, 267, 519-523.
    [88] Wu, D.; Chen, A.; Johnson, C. S., Jr. J. Magn. Reson. 1995, 115, 260-264.
    [89] Mills, R. J. Phys. Chem. 1973, 77, 685-688.
    [90] Holz, M.; Weingartner, H. J. Magn. Reson. 1991, 92, 115-125.
    [91] Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99, 2039-2044
    [92] Ananthapadmanabhan, K. P.; Goddard, E. D.; Turro, N. J.; Kuo, P. L. Langmuir 1985, 1, 352-355.
    [93] Turro, N. J.; Baretz, B. H.; Kuo, P. L. Macromolecules 1984, 17, 1321-1324.
    [94] Kuo, P. L.; Hou, S. S.; Teng, C. K.; Liang, W. J. Colloid Polym. Sci. 2001, 279, 286-291.
    [95] Winnik, F. M.; Regismond, S. T. A. Colloids Surf., A 1996, 118, 1-39.
    [96] Dong, D.; Winnik, M. A. Can. J. Chem. 1984, 62, 2560-2565.
    [97] Shannigrahi, M.; Bagchi, S. J. Phys. Chem. B 2005, 109, 14567-14572.
    [98] Elworthy, P. H.; Mysels, K. J. J. Colloid Polym. Sci. 1966, 21, 331-347.
    [99] Benrraou, M.; Bales, B. L.; Zana, R. J. Phys. Chem. B 2003, 107, 13432-13440.
    [100] Amato, M. E.; Caponetti, E.; Martino, D. C.; Pedone, L. J. Phys. Chem. B 2003, 107, 10048-10056.
    [101] Funasaki, N.; Ishikawa, S.; Neya, S. J. Phys. Chem. B 2004, 108, 9593-9598.
    [102] Nordstierna, L.; Furo, I.; Stilbs, P. J. Am. Chem. Soc. 2006, 128, 6704-6712.
    [103] Cui, X.; Mao, S.; Liu, M.; Yuan, H.; Du, Y. Langmuir 2008, 24, 10771-10775.
    [104] Cui, X. H.; Jiang, Y.; Yang, C. S.; Lu, X. Y.; Chen, H.; Mao, S. Z.; Liu, M. L.; Yuan, H. Z; Luo, P. Y.; Du, Y. R. J. Phys. Chem. B 2010, 114, 7808-7816.
    [105] Huibers, P. D. T. Langmuir 1999, 15, 7546-7550.
    [106] Srinivasan, V.; Blankschtein, D. Langmuir 2003, 19, 9932-9945.
    [107] Stilbs, P. Prog. Nucl. Magn. Res. Spectrosc. 1987, 19, 1-45.
    [108] Soderman, O.; Stilbs, P. Prog. Nucl. Magn. Res. Spectrosc. 1994, 26, 445-482.
    [109] Orfi, L.; Lin, M.; Larive, C. K. Anal. Chem., 1998, 70, 1339-1345.
    [110] Hu, J.; Xu, T.; Cheng, Y. Chem. Rev. 2012, 112, 3856-3891.
    [111] Denkova, P. S.; Lokeren, L. V.; Willem, R. J. Phys. Chem. B 2009, 113, 6703-6709.
    [112] Klähn, M.; Stüber, C.; Seduraman, A.; Wu, P. J. Phys. Chem. B 2010, 114, 2856–2868.
    [113] Uma, K.; Balaram, H.; Raghothama, S.; Balaram, P. Biochem. Biophys. Res. Commun. 1988, 151, 153-157.
    [114] Krishman, V. V.; Shekar, S. C.; Kumar, A. J. Am. Chem. Soc. 1991, 113, 7542-7550.
    [115] Chai, M.; Niu, Y.; Youngs, W. J.; Rinaldi, P. L. J. Am. Chem. Soc. 2001, 123, 4670-4678.
    [116] Abragam, A. The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961.
    [117] Collins, K. D. Biophys. J. 1997, 72, 65-76.
    [118] Collins, K. D. Methods 2004, 34, 300-311.
    [119] Zhao, H. J. Chem. Technol. Biotechnol. 2006, 81, 877-891.
    [120] Marcus, Y. Chem. Rev. 2009, 109, 1346-1370.
    [121] Yaminsky, V. V.; Vogler, E. Curr. Opin. Colloid Interface Sci. 2001, 6, 342-349.
    [122] Renoncourt, A.; Vlachy, N.; Bauduin, P.; Drechsler, M.; Touraud, D.; Verbavatz, J. M.; Dubois, M.; Kunz, W.; Ninham, B. W. Langmuir 2007, 23, 2376-2381.
    [123] Vlachy, N.; Jagoda-Cwiklik, B.; Vacha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Adv. Colloid Interface Sci. 2009, 146, 42-47.
    [124] Schild, H. G.; Tirrell, D. A. Langmuir 1991, 19, 665-671.
    [125] Chen, J.; Gong, X.; Yang, H.; Yao, Y.; Xu, M.; Chen, Q.; Cheng, R. Macromolecules 2011, 44, 6227-6231.
    [126] Chen, J.; Xue, H.; Yao, Y.; Yang, H.; Li, A.; Xu, M.; Chen, Q.; Cheng, R. Macromolecules 2012, 45, 5524-5529.

    下載圖示 校內:2020-10-16公開
    校外:2020-10-16公開
    QR CODE