簡易檢索 / 詳目顯示

研究生: 蔡宜君
Tsai, Yi-Chun
論文名稱: 氧化鋅基透明導電薄膜在可撓式基板上光電性質研究
Investigation of the optical and electrical properties of ZnO-based transparent conducting thin films on flexible substrates
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 95
中文關鍵詞: 透明導電薄膜可撓式彎曲測試機械性質
外文關鍵詞: TCO, flexibe, bending test, strain, mechanism
相關次數: 點閱:92下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AZO透明導電薄膜在不使用基板加溫與退火處理過程中,成功於低溫低功率下於玻璃基板與塑膠基板上成長具有低電阻率與高穿透率之透明導電薄膜。薄膜成長過程中,工作壓力的大小扮演著重要的影響因素。除此之外,另加入一層金屬薄膜層與AZO形成Ag/AZO (AA)與AZO/Ag/AZO (AAA)結構之電極,可在同低溫低功率製程條件下表現出比單層AZO透明導電薄膜更具優異之光電特性,不論是在玻璃基板或塑膠基板上;三明治結構(AAA)中之上下兩層之AZO也分別扮演著不同重要的角色。透明導電薄膜於可撓式基板上受機械性質傷害後其光電特性的變化與穩定度也是本文探討的重點之一。藉由簡單的彎曲測試,分為face in和face out兩彎曲方向去做探討,盼有助於未來在可攜式元件上的設計與應用。除此之外,於AZO透明導電薄膜與基板間加入一層ZnO緩衝層,除了可有效提升AZO薄膜品質和降低電阻率之外,也可提升薄膜對機械性質傷害的耐受度。

    Highly transparent conducting Al-doped zinc oxide (AZO) films are deposited on a non-alkali glass substrate and flexible poly (ether sulfone) (PES) substrates by an RF magnetron sputtering system at room temperature and under low sputtering power. Without substrate heating or post-annealing treatment, ZnO-based flexible electrodes with low resistivity and high transmittance are prepared. We also find that AZO film deposited under extremely low working pressure is very important to form good crystallinity of AZO thin film. The AZO films show low resistivity (4.05× 10-4 Ω•cm on the glass substrate, 9.01×10-4 Ω•cm on the PES substrate) and a high average transmittance (> 90% for both glass and PES substrates). Besides, the electrical and optical characteristics of Ag/AZO (AA) and AZO/Ag/AZO (AAA) electrodes grown on glass substrates are investigated. Sheet resistance values of 9.18 Ω/square and 8.08 Ω/square are obtained for AA and AAA structures, respectively. The optical transmittance of the AAA electrode (89%) is higher than that of the AA electrode (73.7%). Besides, the AAA structure is deposited on a flexible PES substrate; it also exhibits excellent electrical and optical properties (ρ= 6 × 10-5 Ω•cm, Rsh= 8.8 Ω/square, and T%= 88%). The figure of merit values (FTC) are 3.9×10-2 Ω-1 and 3.2×10-2 Ω-1 for AZO/Ag/AZO/glass (AAAG) and AZO/Ag/AZO/PES (AAAP) electrodes, respectively. In this work, electromechnical study is conducted on the performance of Al-doped zinc oxide film deposited on a flexible PES substrate. The change in electrical and optical properities by using a simple model method with face-out (FO) bending and face-in (FI) bending is proposed to understand the failure mechanisms. The results of bending test show that the face-out direction enables AZO films deposited on PES substrates to tolerate greater mechanical bending. When the value of strain is over 1%, the resistivity increases significantly and cracks form. Accordingly, the value of a critical strain can be safely considered as a design parameter for projecting devices deposited on flexible substrates. In addition, the other experimental results show that the AZO films with a ZnO buffer layer and a UV-ozone treatment had a remarkable decrease of resistivity (54%) comparing to those without a ZnO buffer layer. The results show that the decrease in resistivity comes from an increase of carrier concentration after inserting a ZnO buffer layer and using a UV-ozone treatment. The AZO films show the lowest electrical resistivity of 4.13×10−4 Ω•cm, about 88% optical transmittance at a wavelength of 550 nm (average optical transmittance is about 85% in the visible region), and the average surface roughness of Ra = 1.56 nm. Further investigation of the flexibility of the AZO films deposited on ZnO-buffered flexible substrates, the bending test shows that a ZnO buffer layer is effective to enhance the durability of AZO thin films.

    Abstract (Chinese) / I Abstract (English) / II Acknowledgement / V Content / VI Table Caption / IX Figure Caption / X Chapter 1 Introduction / 1 1-1 Background / 1 1-2 Organization / 2 Chapter 2 Fundamental Theorems / 8 2-1 Relation of resistivity, mobility, and carrier concentration / 8 2-2 Carrier transport of TCO/metal/TCO structure / 8 2-3 Scattering mechanisms in transparent conducting oxide films / 9 2-4 Figure of merit for transparent conductors / 10 2-5 Burstein_Moss effect / 10 2-6 Parallel circuit model of TCO/metal/TCO structure / 11 2-7 Optical band gap / 12 Chapter 3 Experimental methods and process / 13 3-1 The systems of Fabrication and measurement / 13 3-1-1 RF Magnetron Sputter / 13 3-1-2 Thermal evaporation / 13 3-1-3 UV-ozone / 14 3-1-4 Hall effect measurement / 14 3-1-5 XRD / 15 3-1-6 SEM / AFM / 15 3-1-7 UV-Visible spectrophotometer / 16 3-2 Experimental details / 17 3-2-1 The investigations of the transparent conducting ZnO-based thin films deposited on different substrates / 17 3-2-2 The investigation and comparison of the electrical and optical characteristics of Ag/AZO and AZO/Ag/AZO electrodes / 18 3-2-3 The bending effect on the electrical and optical characteristics of AZO single-layer film and AZO/Ag/AZO triple-layer films deposited on the flexible substrates / 19 3-2-4 Improved AZO thin films with a ZnO buffer layer and a surface cleaning treatment on the flexible substrates / 21 Chapter 4 Results and discussion / 22 4-1 The investigations of the transparent conducting ZnO- based thin films deposited on different substrates / 22 4-2 The investigation and comparison of the electrical and optical characteristics of Ag/AZO and AZO/Ag/AZO electrodes / 27 4-3 The bending effect on the electrical and optical characteristics of AZO single-layer film and AZO/Ag/AZO triple-layer films deposited on the flexible substrates / 31 4-4 Improved AZO thin films with a ZnO buffer layer and a surface cleaning treatment on the flexible substrates / 36 Chapter 5 Conclusions / 40 Chapter 6 Future Works / 43 Reference / 44

    [1] Z. A. Wang, J. B. Chu, H. B. Zhu, Z. Sun, Y. W. Chen, S. M. Huang, Solid-State Electronics, 53, 1149 (2009).
    [2] H. J. Cho, S. U. Lee, B. Hong, Y. D. Shin, J. Y. Ju, H. D. Kim, M. Park, W. S.Choi, Thin Solid Films, 518, 2941 (2010).
    [3] Y. Imanishi, M. Taguchi, K. I. Onisawa. Thin Solid Films, 518, 2945 (2010).
    [4] J. I. Oda, J. I. Nomoto, T. Miyata, T. Minami, Thin Solid Films, 518, 2984 (2010).
    [5] C. Guille’n, J. Herrero, Vacuum, 84, 924 (2010).
    [6] W. Yang, Z. Liu, D. L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wua, Applied Surface Science, 255, 5669 (2009).
    [7] D. H. Zhang, T. L. Yang , J. Ma, Q. P. Wang, R. W. Gao, H. L. Ma, Applied Surface Science, 158, 43 (2000).
    [8] Y. C. Lin, M. Z. Chen, C. C. Kuo, W. T. Yen, Colloids and Surfaces A:Physicochem. Eng. Aspects, 337, 52(2009).
    [9] H. Zhang, C. Lei, H. Liu, C. Yuan, Journal of Semiconductors, 30, 4 (2009).
    [10] S. Elhalawaty, K. Sivaramakrishnan, N. D. Theodore, T. L. Alford, Thin Solid Films, 518, 3326 (2010).
    [11] S. W. Cho, J. A. Jeong, J. H. Bae, J. M. Moon, K. H. Choi, S. W. Jeong, N. J.Park, J. J. Kim, S. H. Lee, J. W. Kang, M. S. Yi, H. K. Kim, Thin Solid Films,516, 7881 (2008).
    [12] K. Sivaramakrishnan, N. D. Theodore, J. F. Moulder, T. L. Alford, Journal of Applied Physics, 106, 063510(2009).
    [13] D. Kim, Journal of Alloys and Compounds, 493, 208 (2010).
    [14] J. H. Park, H. K. Kim, H. Lee, H. Lee, S. Yoon, C. D. Kim, Electrochemical and Solid-State Letters, 13, J53(2010).
    [15] J. C. C. Fan, T. B. Reed, J. B. Goodenough, Applied Optics, 15, 4 (1976).
    [16] D. R. Lide, Handbook of Chemistry and Physics, 76th ed., CRC Press, (1995).
    [17] T. H. Kim, B. H. Choi, J. S. Park, S. M. Lee, Y. S. Lee, L. S. Park, Molecular Crystals & Liquid Crystals, 520, (2010).
    [18] H. J. Cho, K. W. Park, J. K. Ahn, N. J. Seong, S. G. Yoon, W. H. Park, S. M. Yoon, D. J. Park, J. Y. Lee, Journal of The Electrochemical Society, 156, J215 (2009).
    [19] D. R. Sahu, S. Y. Lin, J. L. Huang, Applied Surface Science, 253, 4886 (2007).
    [20] H. K. Park, J. A. Jeong, Y. S. Park, S. I. Na, D. Y. Kim, H. K. Kim, Electrochemical and Solid-State Letters, 12, H309 (2009).
    [21] Y. Leterrier, L. Médico, F. Demarco, J. A. E. Månson, U. Betz, M. F. Escolá, M.K. Olsson, F. Atamny. Thin Solid Films, 460, 156 (2004).
    [22] S. Grego, J. Lewis, E. Vick, D. Temple. Thin Solid Films, 515, 4745 (2007).
    [23] D. R. Cairns, R. P. Witte II, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P.Crawford, Applied Physics Letters, 76, 1427 (2000).
    [24] E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Águas, I. Ferreira, M. E. V. sa Costa, M. H. Godinho, P. L. Almedia, J. P. Borges, R. Martins, Advanced Engineering Material, 4, 610 (2002).
    [25] J. L. Ni, X. F. Zhu, Z. L. Pei, J. Gong, C. Sun, G. P. Zhang, J. Phys. D: Applied Physics, 42, 175404 (2009).
    [26] J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Applied Physics Letters, 85, 3450 (2004).
    [27] C. Y. Hsu, T. F. K, Y. M. Huang, Journal of the European Ceramic Society, 28,3065 (2008).
    [28] M. Fahland, P. Karlsson, C. Charton, Thin Solid Films, 392, 334 (2001). [29] X. Jiang, F. L. Wong, M. K. Fung, S. T. Lee, Applied Physics Letters, 83, 1875 (2003).
    [30] W. Song, S. K. So, D. Wang, Y. Qiu, L. Cao, Applied Surface Science, 177, 158(2001).
    [31] C. Tengstedt, A. Kanciurzewska, M. P. de Jong, S. Braun, W. R. Salaneck, M. Fahlman, Thin Solid Films, 515, 2085 (2006).
    [32] W. Wang, Q. Feng, K. Jiang, J. Huang, X. Zhang, W. Song, R. Tan, Applied Surface Science, 257, 3884 (2011).
    [33] J. Nelson, J. Kirkpatrick, P. Ravirajan,Physical Review B, 69, 035337 (2004).
    [34] S. Calnan, A. N. Tiwari, Thin Solid Films, 518, 1839 (2010).
    [35] A. G. Milnes, D. L. Feucht, Heterojunciton and Metal-Semiconductor Junctions(Academic, New York, 1972).
    [36] T. W. Kim, D. C. Choo, Y. S. No, W. K. Choi, E. H. Choi, Applied Surface Science, 253, 1917 (2006).
    [37] H. Kim, J. S. Horwitz, W. H. Kim, A. J. Makinen, Z. H. Kafafi, D. B. Chrisey, Thin Solid Films, 420–421, 539 (2002).
    [38] D. H. Zhang, H. L. Ma, Applied Physics A, 62, 487 (1996).
    [39] G. Haacke, Journal of Applied Physics, 47, 9 (1976).
    [40] K. F. Berggren, B. E. Sernelius, L. Engström, Physical Review B, 30, 3240(1984).
    [41] I. Hamberg, C. G. Granqvist, K. -F. Berggren, B. E. Sernelius, L. Engström, Physical Review B, 30, 3240 (1984).
    [42] Martin, E. J. J., Yan, M., Lane, M., Ireland, J., Kannewurf, C. R., Chang, R. P. H., Thin Solid Films, 461, 309 (2004).
    [43] V. Khranovskyy, U. Grossner, V. Lazorenko, G. V. Lashkarev, B. G. Svensson, and R. Yakimova, Superlattices Microstructure, 39, 275 (2006).
    [44] Z. Suo, E. Y. Ma, H. Gleskova, S. Wagner, Applied Physics Letters, 74, 117779(1999).
    [45] R. Navamathavan, K. K. Kim, D. K. Hwang, S. J. Park, J. H. Hahn, T. G. Lee, G.S. Kim, Applied Surface Science, 253, 464(2006).
    [46] S. K. PARK, J. I. HAN, D. G. MOON, W. K. KIM, Japanese Journal of Applied Physics, 42, 623 (2003).
    [47] X. T. Hao, J. Ma, D. H. Zhang, Y. G. Yang, H. L. Ma, C. F. Cheng, X. D. Liu,Materials Science and Engineering B, 90, 50 (2002).
    [48] T. Shibata, H. Irie, D. A. Tryk, K. Hashimoto, Journal of Physical Chemistry C, 113, 12811 (2009).
    [49] X. J. Wang, Q. S Lei, W. Xu, W. L. Zhou, J. Yu, Materials Letters, 63, 1371 (2009).
    [50] H. L. Ma, X. T. Hao, J. Ma, Y. G. Yang, S. L. Huang, F. Chen, Q. P. Wang, D. H. Zhang, Surface and Coatings Technology, 161, 58 (2002).
    [51] H. K. Park, J. W. Kang, S. I. Na, D. Y. Kim, H. K. Kim, Solar Energy Materials and Solar Cells, 93, 1994 (2009).
    [52] M. Fahland, P. Karlsson, C. Charton, Thin Solid Films, 392, 334 (2001).
    [53] C. Charton, M. Fahland, Proceedings of the Conference on Plasma and Surface Engineering (PSE) (2000).
    [54] G. Haacke, Journal of Applied Physics, 47, No.9 (1976).
    [55] H. K. Park, J. A. Jeong, Y. S. Park, S. I. Na, D. Y. Kim, H. K. Kim, Electrochemical and Solid-State Letters, 12, H309 (2009).
    [56] Y. S. Park, H. K. Kim, S. W. Kim, Journal of The Electrochemical Society, 157, J301 (2010).
    [57] T. H. Kim, B. H. Choi, J. S. Park, S. M. Lee, Y. S. Lee, L. S. Park, Molecular Crystals & Liquid Crystals, 520 (2010).
    [58] K. H. Choi, H. J. Nam, J. A. Jeong, S. W. Cho, H. K. Kim, J. W. Kang, D. G. Kim, W. J. Cho, Applied Physics Letters, 92, 223302 (2008).
    [59] J. I. Oda, J. I. Nomoto, T. Miyata, T. Minami, Thin Solid Films, 518, 2984 (2010).
    [60] Z. L. Pei, X. B. Zhang, G. P. Zhang, J. Gong, C. Sun, R. F. Huang, L. S. Wen, Thin Solid Films, 497, 20 (2006).
    [61] J. H. Park, H. K. Kim, H. Lee, H. Lee, S. Yoon, C. D. Kim, Electrochemical and Solid-State Letters, 13 (5), J53 (2010).
    [62] H. Han, N. D. Theodore, T. L. Alford, Journal of Applied Physics, 103, 013708(2008).
    [63] X. H. Yu, J. Ma, F. Ji, Y.H. Wang, C. F. Cheng, H. L. Ma, Applied Surface Science, 245, 310 (2005).
    [64] X. T. Hao, J. Ma, D. H. Zhang, T. L. Yang, H. L. Ma, Y. G. Yang, C. F. Cheng, J.Huang, Applied Surface Science, 189, 18 (2002).
    [65] M. de la, L. Olvera, H. Gomez, Solar Energy Materials and Solar Cells, 91, 1449(2007).
    [66] L. Gong, J. Lu, Z. Ye, Solar Energy Materials and Solar Cells, 94, 1282 (2010).
    [67] C. C. Liu, Y. C. Liang, C. C. Kuo, Y. Y. Liou, J. W. Chen, C. C. Lin, Solar Energy Materials & Solar Cells, 93, 267 (2009).

    下載圖示 校內:2013-07-18公開
    校外:2014-07-18公開
    QR CODE