簡易檢索 / 詳目顯示

研究生: 楊承翰
Yang, Cheng-Han
論文名稱: 利用壓克力透鏡陣列/液晶透鏡陣列於積分成像系統之立體影像能力之研究
Study of Autostereoscopic Imaging Capabilities Achieved via Individual Acrylic/Liquid Crystal Lens Arrays in Integral Imaging System
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 液晶3D顯示器透鏡陣列積分成像
外文關鍵詞: liquid crystal, 3D display, lens array, integral imaging system
相關次數: 點閱:104下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的是以積分成像系統(integral imaging system)實驗裝置為依據,研究並討論壓克力透鏡陣列(lens array)與圓孔型液晶透鏡陣列於立體影像表現之差異。積分成像系統主要利用透鏡陣列擷取物體各種方位的影像資訊,再透過顯示器與透鏡陣列重建物體的立體影像。整個研究中我們先利用購得的壓克力透鏡陣列對實驗所建立的積分成像系統進行實驗以確定所建立之積分成像系統之能力,包括可視角觀察、立體影像品質,以及偏振光之影響等。
    接著,根據參考文獻設計並製作液晶透鏡陣列進行相同之實驗觀察。相較於壓克力透鏡陣列,液晶透鏡陣列可以做2D/3D的影像切換,但是,不連續線與偏振相關對於立體影像的影響是必須解決的

    In this thesis, we study 3D imaging performance achieved by two types of lens arrays in integral imaging system, which one type is acrylic lens arrays and the other type is hole-patterned electrode liquid crystal lens arrays. The principle of integral imaging is that image recording of orientations and locations from objects is initially achieved by lens arrays, and then 3D image reconstruction is finally completed by means of combinations of pickup images and lens arrays.
    In the beginning, we use two purchased acrylic lens arrays to build up our integral imaging system for the purposes of understanding of its imaging capabilities including viewing angles, imaging performance, and polarization dependence. And then, we refer some references to design and fabricate liquid crystal lens arrays to be used in same system.
    Form experimental results, we conclude that liquid crystal lens arrays are capable of 2D/3D imaging switching, but imaging performance is not good as well as via acrylic lens arrays. Especially, the problems of disclination lines and polarization dependence in liquid crystal lens arrays must be resolved.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 第二章 實驗原理 6 2.1 液晶材料介紹[4] 6 2.1.1 液晶的發現 6 2.1.2 液晶分類 7 2.1.3 液晶的光學性質 9 2.1.4 液晶配向 14 2.2 透鏡介紹 16 2.3 圓孔型液晶透鏡介紹 20 2.3.1 圓孔型液晶透鏡 20 2.3.2 圓孔型液晶透鏡之干涉條紋 21 2.3.3 圓孔型液晶透鏡不連續線產生 22 2.4 積分成像系統原理 24 第三章 實驗方法 28 3.1 液晶透鏡製作 28 3.1.1 製作液晶盒所需之材料與設備 28 3.1.2 圖樣電極光罩製作 29 3.1.3 液晶透鏡陣列製作步驟 30 3.2 實驗裝置 35 3.2.1 液晶透鏡之干涉條紋量測 35 3.2.2 積分成像系統之物件規格與實驗條件 37 第四章 實驗結果與討論 39 4.1 壓克力透鏡陣列於積分成像系統之實驗結果 39 4.1.1 六邊形與方形壓克力透鏡陣列 39 4.1.2 偏振光對壓克力透鏡陣列立體影像之影響 52 4.2 液晶透鏡陣列之物性參數量測 60 4.2.1 液晶層厚度對物性參數調制 60 4.2.2 高預傾角配向液晶透鏡陣列量測[21] 70 4.2.3 偏振光對液晶透鏡陣列立體影像之影響 75 第五章 結論與未來展望 78 5.1 結論 78 5.2 未來展望 79 參考文獻 80

    參考文獻
    [1] G. Lippmann, “La photographic integrale”, C.R. Acad. Sci. Vol.146, pp. 446 (1908).
    [2] C. Wheatstone, “On some remarkable, and hitherto unobserved , phenomena of binocular vision”, Philos.Trans. R. Soc. Lond., pp. 371 (1838).
    [3] Yi-Pai Huang et al., “Development and researches of real 3D display technologies”, 光學工程 第九十八期,1-8 (2007).
    [4] 松本正一 ・ 角田市良 合著,“液晶之基礎與應用”,國立編譯館,民國94年8月修訂八版.
    [5] 網路資源
    http://www.tcfsh.tc.edu.tw/adm/special/far-sighted/creature/download/961024_lee.pdf
    [6] 游琮宏, “控制混合矽烷鍍膜於玻璃表面產生可調變預傾角的液晶盒之研究”,國立成功大學光電科學與工程研究所碩士論文,中華民國九十六年七月.
    [7] Alfred Hagemeyer et al., “Determination of orientational order parameters in liquid crystals from temperature-dependent nmrexperiments”, J.Chem. Soc. Faraday Trans. Vol. 90, No 22, pp.3433 (1994).
    [8] Jianshu Cao et al., “Theory of polarizable liquid crystals:pptical birefringence”, J. Chem. Phys. Vol. 99, No 31 (1993).
    [9] F. C. Frank, “On the theory of liquid crystals”, Faraday Soc. Vol. 25, pp.19 (1958).
    [10] Jason J. Ge et al.,“Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains”, J. Am. Chem. Soc. Vol. 123, NO. 24, pp. 5678 (2001).
    [11] 張繼鴻, “發展一可用電壓調控焦距的液晶元件”, 私立中原大學應用物理研究所碩士論文, 中華民國九十二年六月.
    [12] Mao Ye et al., “Optical properties of liquid crystal lens of any size”, Jpn. J. Appl. Phys. Vol. 41, No 5B, pp. L571 (2002).
    [13] Hongwen Ren et al., “Liquid crystal lens with large focal length tunability and low operating voltage”, Opt. Express Vol. 15, No .18, pp.11328 (2007).
    [14] 許哲儒, “ 電控式圓孔型液晶透鏡之光學特性隨玻璃層厚度變化之影響及不連續線問題解決方法之研究”,國立成功大學光電科學與工程研究所碩士論文, 中華民國九十八年七月.
    [15] Mao Ye et al., “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field” ,Jpn. J. Appl. Phys. Vol. 42, No 8, pp.5086 (2003).
    [16] Mao Ye et al.,“Liquid-crystal lens with a focal length that is variable in a wide range”, Appl. Opt. Vol. 43, No. 35, pp. 6407 (2004).
    [17] Sung Wook Min et al., “Analysis of an optical depth converter used in a three-dimensional integral imaging system”, Appl. Opt. Vol.43, No. 23, pp.4539 (2004).
    [18] Sung Wook Min et al., “Study foe wide viewing integral photography using an aspheric Fresnel-lens array”, Opt. Eng. Vol.41, No. 10, pp.2572 (2002).
    [19] Fumio Okano et al., “Three-dimensional video system based on integral photography”, Opt. Eng. Vol.38, No. 6, pp.1072 (1999).
    [20] 陳盈伶, “ 電壓調變液晶透鏡之研究”, 國立中山大學物理學研究所碩士論文, 中華民國九十五年七月.
    [21] Chi Yen Huang et al., “Influence of pretilt angle on disclination lines of liquid crystal lens”, Appl. Opt. Vol.51, No. 19, pp.4629 (2012).

    下載圖示 校內:2018-07-30公開
    校外:2018-07-30公開
    QR CODE