簡易檢索 / 詳目顯示

研究生: 蘇親儒
Su, Chin-Ru
論文名稱: 逆運算法於預測爐內壁幾何形狀之研究
Study on Geometry Estimation of the Furnace Inner Wall by Inverse Method
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 146
中文關鍵詞: 逆向矩陣法灰預測虛擬區域逆向熱傳導
外文關鍵詞: Reversed matrix method, Grey prediction, Virtual area, Inverse heat conduction
相關次數: 點閱:117下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用線性最小均方根誤差法(linear least-squares error method)結合逆向矩陣法(reversed matrix method)及虛擬區域(virtual area)的概念,來求解不同類型爐壁系統的穩態熱傳導逆向問題(inverse heat conduction problem, IHCP)。其過程係藉由爐壁內少數量測點的溫度來估測外壁表面的溫度分布及內壁邊界的幾何形狀。
    首先,應用有限差分法(finite-difference method)將擴張後之虛擬爐壁系統的統御方程式及邊界條件離散化(discretization)並建構成線性矩陣方程式,藉由排列矩陣方程式使未知的虛擬邊界溫度及爐壁外表面溫度可用一行矩陣(column matrix)明確地表示出來。其次,利用線性最小均方根誤差法將問題最佳化,再以爐壁厚度內少數量測點的溫度代入此線性逆模型中,以求得虛擬邊界及爐壁外表面的溫度。最後,藉由直接解(direct solution)的計算方式,即可推估內壁邊界等溫線分布的位置,此曲線即為內壁邊界的幾何形狀。
    本方法最大的優點在於分析熱傳問題時,可以避開傳統方法必須迭代的運算程序,不需初始猜測值的狀況下即可直接解出未知條件。所以計算上較一般傳統方法快速與精確。本文中利用直接問題(direct problem)所求得的溫度值來模擬實際的溫度量測,並考慮量測誤差大小對於估測結果的影響。由逆解結果顯示,預測的幾何形狀隨著量測點遠離預測邊界、減少量測點數目及增加量測誤差,將導致預測偏差有增加的趨勢。不過,在合理的量測誤差下,本方法於靠近外壁處以少數的量測點資料皆可順利推估爐壁的幾何形狀。
    本文為了減少逆運算過程所需要的量測點數目,特別使用灰預測理論的決定性灰色動態預測模型(deterministic grey dynamic model)。該方法的主要目的係藉由少數點數的直接量測溫度值,推估得到更多點的間接量測溫度值。因此,雖然實際上僅執行少數點數的直接量測,但卻能達到增加量測點的實際效果,藉以提供更多有效的資料提高估測值的準確度。本文所提出的逆向矩陣法合併灰預測模型可應用於一維、二維甚至三維之問題,故此方法可成為研究逆問題的有效方法。

    In this study, the inverse heat conduction problem (IHCP) for various furnace wall systems is solved by using the linear least-squares error and the reversed matrix method combined with a virtual area. The temperature distribution of the outer surface and the geometry of inner surface of the furnace wall were estimated from a few of measured temperature in the furnace wall.
    In the estimation process, the finite-difference method is first used for the furnace wall system containing the virtual area to discretize the governing equation and boundary condition and to establish a linear matrix equation. The temperatures of unknown virtual boundary and outer surface of furnace wall can be represented by a column matrix in the linear matrix equation. Then the problem is computed by the linear least-squares error method and a few of measured temperature in furnace wall are put into the linear inverse model to obtain the temperatures of the virtual area boundary and the temperature of the outer surface of furnace wall. Finally, the location of isothermal curve for inner boundary of furnace wall is estimated by a direct process. The isothermal curve is represented the geometry of inner surface of furnace wall.
    The advantage of this approach is that the unknown condition can be directly solved without the initially guessed temperatures and the iteration process for traditional method. Therefore, the calculation in this work is more efficient and accurate than traditional method. In this work, the temperatures obtained from direct problem are used to simulate the measured temperatures and the effect of measurement error on the estimated result is also considered. The result shows that the estimation error of geometry increased with increase in distance between measured points and inner surface and with increase in preset error, but with decrease in the number of measured points. However, the geometry of furnace inner surface could be successfully estimated by only the temperatures of a small number of measured points within and near the outer surface under reasonable preset error.
    For reducing the number of measured points, a deterministic grey dynamic model in grey prediction theory is used in this study. It is used to obtain more values of temperature from the presented measurements. Therefore, the accuracy for estimation can promote due to more effective data. The inverse matrix method combined with grey prediction model proposed in this study can be applied to multi-dimensional problem. It is indeed a effective method for the study of inverse problems.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 符號說明 XV 第一章 緒論 1 1-1 研究目的與背景 1 1-2 文獻回顧 4 1-3 研究重點與本文架構 8 第二章 逆問題之數值方法 10 2-1 簡介 10 2-2 逆向矩陣法 12 2-3 逆向矩陣法求解的誤差範圍 16 2-4 量測誤差與估測偏差 18 第三章 矩形孔穴平板之熱傳逆問題分析 19 3-1 基本假設與數學模式 19 3-2 直接問題 21 3-3 逆問題 23 3-4 結果與討論 25 第四章 單層空心圓柱爐壁之熱傳逆問題分析 38 4-1 基本假設與數學模式 38 4-2 直接問題 40 4-3 逆問題 42 4-4 結果與討論 46 第五章 雙層空心圓柱爐壁之熱傳逆問題分析 63 5-1 基本假設與數學模式 63 5-2 直接問題 66 5-3 逆問題 68 5-4 結果與討論 72 第六章 應用灰預測理論於幾何逆問題之分析 93 6-1 簡介 93 6-2 灰預測理論 95 6-2-1 累加生成運算 95 6-2-2 累減生成運算 97 6-2-3 灰預測模型GM(1,1) 98 6-3 決定性灰色動態預測模型DGDM(1,1,1) 100 6-3-1 轉移函數模型之表示法 101 6-3-2 決定性收斂法 101 6-3-3 轉移函數模型參數R、S1、及S2之估計 103 6-3-4 以傅立葉級數擬合先行指標之累加生成序列 106 6-3-5 傅立葉係數之求法 106 6-3-6 輸出序列預測值 之求法 107 6-4 結果與討論 109 第七章 結論與建議 131 7-1 結論 131 7-2 未來研究方向與建議 133 參考文獻 134 附錄 三次樣條內差法 142 自述 146

    1. Shumakov, N. V., A method for the experimental study of the process. of heating a solid body, Soviet Physics-Technical Physics (Translated by Institute of Physics), 2, pp. 771, 1957.
    2. Beck, J. V., Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, 62-HT-46, 1962.
    3. Beck, J.V., Surface heat flux determination using an integral method, Nucl. Eng. Des., 7, pp. 170-178, 1968.
    4. Beck, J. V., Nonlinear estimation applied to the nonlinear inverse heat conduction problem, Int. J. of Heat and mass Transfer, 13, pp. 703-716, 1970.
    5. Beck, J.V., Litkouhi, B., and St. Clair, C.R., Efficient sequential solution of nonlinear inverse heat conduction problem, Numerical Heat Transfer, 5, pp. 275-286, 1982
    6. Özisik, M. N. and Orlande, H. R. B., Inverse heat transfer: fundamentals and applications, Taylor & Francis, New York, 2000.
    7. Alifanov, O. M., Solution of an inverse problem of heat conduction by iteration methods, J. of Eng. Phys., 26(4), pp. 471-476, 1974.
    8. Alifanov, O. M. and Mikhailov, V. V., Solution of the nonlinear inverse thermal conductivity problem by the iteration method, J. of Eng. Phys., 35, pp. 1501-1506, 1978.
    9. Alifanov, O. M., Inverse heat transfer problem, Springer-Verlag, New York, 1994.
    10. Alifanov, O. M., Inverse boundary value problem of heat conduction, J. of Eng. Phys., 25, 1975.
    11. Alifanov, O. M. and Artyukhin, F. A., Regularized numerical solution of nonlinear inverse heat-conduction problem, J. of Eng. Phys., 29, pp. 934-938, 1975.
    12. Alifanov, O. M., Identification of processes of heat container apparatus. An introduction to the theory of inverse problem of heat transfer, Machinery publisher, Moscow, 1979.
    13. Chen, H. T. and Chang, S. M., Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer, 33(4), pp. 621-628, 1990.
    14. Chen, H. T. and Lin, J. Y., Analysis of two-dimensional hyperbolic heat conduction problems, Int. J. Heat Mass Transfer, 37(1), pp. 153-164, 1994.
    15. Chen, H. T., Lin, S. Y. and Fang, L. C., Estimation of surface temperature in two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, 44, pp. 1455-1463, 2001.
    16. Chen, H. T., Lin, S. Y., Wang, H. R. and Fang, L. C., Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, 45, pp. 15-23, 2002.
    17. Chen, H. T., Lin, J. Y., Wu, C. H. and Huang, C. H., Numerical algorithm for estimating temperature-dependent thermal conductivity, Numerical Heat Mass transfer, Part B, 29, pp. 509-522, 1996.
    18. Huang, C. H. and Özisik, M. N., Conjugate gradient method for determining unknown contact conductance during metal casting, Int. J. Heat Mass Transfer, 35, pp. 1779-1786, 1992.
    19. Huang, C. H. and Özisik, M. N., Inverse problem of determining the unknown strength of an internal plate heat source, J. Franklin Inst., 329, pp. 751-764, 1992.
    20. Huang, C. H. and Wu, J. Y., Two-dimensional inverse problem of estimating heat fluxes inside internal combustion engines, J. Appl. Phys., 76(1), pp. 133-141, 1994.
    21. Huang, C. H., Ju, T. M. and Tseng, A. A., The estimation of surface thermal behavior of the working roll in hot rolling process, Int. J. Heat Mass Transfer, 38(6), pp. 1019-1031, 1995.
    22. Huang, C. H. and Wu, J. Y., An inverse problem of determining two boundary heat fluxes in unsteady heat conduction of thick-walled circular cylinder, Inverse Problems in Engineering, 1(2), pp. 133-151, 1995.
    23. Huang, C. H. and Wu, J. Y., Function estimation in predicting temperature-dependent thermal conductivity without internal measurements, J. of Thermophysics and Heat Transfer, 9(4), pp. 667-673, 1995.
    24. Huang, C. H. and Yan, J. Y., An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity, Int. J. Heat Mass Transfer, 38(18), pp. 3433-3441, 1995.
    25. Maillet, D., Degiovanni, A. and Pasquetti, R., Inverse heat conduction applied to the measurement of heat transfer coefficient on a cylinder: comparison between an analytical and a boundary element technique, ASME J. of Heat Transfer, 113, pp. 549-557, 1991.
    26. Martin, T. J. and Dulikavich, G. S., Inverse determination of steady heat convection coefficient distributions, ASME J. of Heat Transfer, 120, pp. 328-334, 1998.
    27. Lin, J. H., Chen, C. K. and Yang, Y. T., An inverse method for simultaneous estimation of the center and surface thermal behavior of a heated cylinder normal to a turbulent air stream, ASME J. of Heat Transfer, 124, pp. 601-608, 2002.
    28. Kim, S. K. and Lee, W. I., An inverse method for estimating thermophysical properties of fluid flowing in a circular duct, Int. Comm. Heat Mass Transfer, 29(8), pp. 1029-1036, 2002.
    29. Kim, S. K. and Lee, W. I., Solution of inverse heat conduction problems using maximum entropy method, Int. J. Heat Mass Transfer, 45, pp. 381-391, 2002.
    30. Su, Jian and Hewitt, G. F., Inverse heat conduction problem of estimating time-varying heat transfer coefficient, Numer. Heat Transfer A, 45, pp. 777-789, 2004.
    31. Sawaf, B., Özisik, M. N. and Jarny, Y., An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic, Int. J. Heat Mass Transfer, 38(16), pp. 3005-3010, 1995.
    32. Hsieh, C. K. and Su, K. C., “A methodology of predicting cavity geometry based on the scanned surface temperature data-prescribed surface temperature at the cavity side,” J. Heat Transfer, 102, pp. 324-329, 1980.
    33. Hsieh, C. K. and Su, K. C., “A methodology of predicting cavity geometry based on the scanned surface temperature data-prescribed heat flux at the cavity side,” J. Heat Transfer, 103, pp. 42-46, 1981.
    34. Hsieh, C. K. and Kassab, Alain J., “A general method for the solution of inverse heat conduction problems with partially unknown system geometries,” Int. J. Heat Mass Transfer, 29(1), pp. 47-58, 1986.
    35. Hitier, B., Calculation and conclusions based on temperature measurements in the bottom of No. 1 blast furnace of CSC, Savoie Refractories, France, private communication, Jul., 1997.
    36. Suh, Y. K., Cho, C. M. and Lee, H. K., Evaluation of mathematical model for estimating refractory wear and solidified layer in the blast furnace hearth, The 1st Int’l congress of science and technology of iron marking, ISIJ, Sendai, Japan, pp. 223-228, 1994.
    37. Yoshikawa, F., Nigo, S., Kiyohara, S., Taguchi, S., Takahashi, H. and Ichimiya, M., Estimation of refractory wear and solidified layer distribution in the blast furnace hearth and its application to the operation, Iron and Steel, pp. 2068-2075, 1987.
    38. Met, L., Wang, X.A. and Meng, X.Y., Finite element method to an inverse problem of three-dimensional heat conduction with partially unknown system geometries, Proceedings of the International Conference on Numerical Methods in Thermal Problems, p 1514, 1991.
    39. Alexandrou, A.N., Inverse finite element method for directly formulated free and moving boundary problems, Computational Modelling of Free and Moving Boundary Problems, p 149-163, 1991.
    40. Choi, C. Y. and Jo, J. C., BEM solution with minimal energy technique for the geometrical inverse heat conduction problem in a doubly connected domain, ASME Journal of Pressure Vessel Technology, 125, pp. 109-117, 2003.
    41. Huang, C. H. and Chao, B. H., An inverse geometry problem in identifying irregular boundary configurations, Int. J. Heat Mass Transfer, 40(9), pp. 2045-2053, 1997.
    42. Huang, C. H. and Chen, C. W., A boundary-element-based inverse problem of estimating boundary conditions in an irregular domain with statistical analysis, Numer. Heat Transfer, Part B, 33, pp. 251-268, 1998.
    43. Yang, C. Y. and Chen, C. K., The boundary estimation in two-dimensional inverse heat conduction problems, J. Phys. D: Appl. Phys, 29, pp. 333-339, 1996.
    44. Yang, C. Y., Linear inverse model for the temperature-dependent thermal conductivity determination in one-dimensional problems, Applied Mathematical Modeling, 22, pp.1-9, 1998.
    45. Lin, J. H., Chen, C. K. and Yang, Y. T., Inverse method for estimating thermal conductivity in one-dimensional heat conduction problems, AIAA Journal of Thermo-physics and Heat Transfer, 15(1), pp.34-41, 2001.
    46. Wang, C. C. and Chen, C. K., Three-Dimensional inverse heat transfers analysis during grinding process, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216(2), pp.199-212, 2002.
    47. Hsu, P. T., Yang, Y. T. and Chen, C. K., Simultaneously estimating the initial and boundary conditions in a two-dimensional hollow cylinder, Int. J. Heat and Mass Transfer, 41(1), pp.219-227, 1998.
    48. Yang, Y. T., Hsu, P. T. and Chen, C. K., A three-dimensional inverse conduction problem approach for estimating heat flux and surface temperature on a hollow cylinder J. Phys. D: Appl .Phys. 30 1326–1333, 1997.
    49. Hsu, P. T., An inverse problem for determining the wall heat flux in laminar film condensation on a finite-sized horizontal plate with a variable heat flux, J. Phys. D: Appl .Phys. 32 586–592, 1999.
    50. Chen, C. K., Wu, L. W., and Yang, Y. T., Estimation of unknown outer-wall heat flux in turbulent circular pipe flow with conduction in the pipe wall, Int. J. Heat Mass Transfer, 48, pp. 3971–3981, 2005.
    51. Chen, C. K., Wu, L. W., and Yang, Y. T., Estimation of time-varying inlet temperature and heat flux in turbulent circular pipe flow, ASME J. Heat Transfer, 128, pp. 44-52, 2006.
    52. Lin, J. H., Chen, C. K. and Yang, Y. T., The inverse estimation of the thermal boundary behavior of a heated cylinder normal to a laminar air stream, Int. J. Heat and Mass Transfer, 43, pp. 3991-4001, 2000.
    53. Chang, M. H., Lin, J. H. and Chen, C. K., The inverse estimation of local heat transfer coefficient in a vertical plate fin with its base subjected to periodically oscillated temperature, Numerical Heat Transfer : Part A, 40(3), pp. 253-271, 2001.
    54. Kalman, R. E., A new approach to linear filtering and prediction problems, Trans. ASME 82D, pp. 35-45, 1990.
    55. Pfahl, R. C. Jr., Nonlinear least-squares: a method for simultaneous thermal property determination in ablating polymeric materials, J. Appl. Polym. Sci., 10(8), pp. 1111-1119, 1966.
    56. Sorenson, H. W., Parameter estimation: principles and problems, Marcel Dekker, New York, 1980.
    57. Yang, C. Y., Noniterative solution of inverse heat conduction problems in one dimension, Communications in Numerical Methods in Engineering, 13(6), pp. 419-427, 1997.
    58. Shaw, Jinsiang, Noniterative solution of inverse problems by the linear least square method, Applied Mathematical Modelling, 25, pp. 683-696, 2001.
    59. Deng Ju-Long, Control problems of grey systems, Systems & Control Letters, 1(5), pp. 288-294, 1982.
    60. Chen, C. K. and Tien, T. L., The indirect measurement of tensile strength by the deterministic grey dynamic model DGDM(1,1,1), Int. J. Systems Science, 28, pp. 683-690, 1997.
    61. Tien, T. L. and Chen, C. K., The indirect measurement of fatigue limits of Structural Steel by the deterministic grey dynamic model DGDM(1,1,1), Applied Mathematical Modeling, 21, pp. 611-619, 1997.
    62. Chen, C. K. and Tien, T. L., A new forecasting method of discrete dynamic system, Applied Mathematics and Computation, 86, pp. 61-84, 1997.
    63. Tien, T. L., A research on the prediction of machining accuracy by the deterministic grey dynamic model DGDM(1, 1, 1), Applied Mathematics and Computation, 161, pp. 923-945, 2005.
    64. 鄧聚龍,“灰色系統基本方法”,華中理工大學出版社,1987。
    65. 鄧聚龍,“灰色控制系統”,華中理工大學出版社,1985。
    66. 傅立,“灰色系統理論及其應用”,科學技術文獻出版社,1992。
    67. Box, G. E. P., Jenkins, G. M., and Reinsel, G. C., Time series analysis: forecasting and control, Prentice-Hall, New Jersey, 1994.
    68. 易德生與郭萍,“灰色理論與方法”,石油工業出版社,1992。

    下載圖示 校內:2008-06-23公開
    校外:2008-06-23公開
    QR CODE