簡易檢索 / 詳目顯示

研究生: 謝松年
Hsieh, Sung-Nien
論文名稱: 摻雜金奈米粒子於高分子發光元件之光電特性研究與應用
The electro-optical characteristics of polymer light-emitting devices by incorporating Au nanoparticles in luminescent polymer
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 122
中文關鍵詞: 金奈米粒子高分子發光二極體
外文關鍵詞: Au nanoparticles, polymer light-emitting devices
相關次數: 點閱:85下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將研究分為兩大部分,第一部份針對金奈米粒子摻雜進入發光高分子後所產生的光電效應做深入的探討,第二部份把此效應運用於上發光元件,內容分別敘述如下:
    在第一部分是利用粒徑約為5nm的金奈米粒子摻雜進入HY-PPV中,並利用Al當作陰極把它組裝成高分子發光二極體,而這元件和未摻雜金奈米粒子的元件,在光學和電學上的行為有明顯的不一樣。藉由分析元件的電流密度-電位-亮度特徵圖形並利用空間電荷限制電流理論加以輔佐,得到金奈米粒子可以在HY-PPV中能有效的捕抓電洞之結論。因為金奈米粒子可以有效的抓住電洞,所以在元件中可以明顯觀察到兩個現象的產生,一個是操作電位的延後,另一個則是改善電子和電洞注入不平衡的狀況,而大幅增加發光效率。為了要更加了解金奈米粒子和發光高分子間的交互作用,我們也藉由改變不同的金奈米粒子之摻雜濃度、陰極金屬和發光高分子材料,探討這些變因對於元件效能的影響。
    在第二部分是利用第一部份所探討的金奈米粒子技術,把它運用到上發光元件,成功製備利用銀當做半穿透陰極的元件,此元件在電流密度為50 mA/cm2時,亮度可高達1536 cd/m2 ,而發光效率為3.4 cd/A,約為沒有金奈米粒子之元件的20倍,而在空氣的穩定性更是遠高於利用LiF/Al/Ag或是Ca/Ag為半穿透陰極的上發光元件。同時我們還比較了上、下發光元件的發光特性,並探討不同的發光層厚度對上發光元件的光學圖譜的影響。

    In this dissertation, the effects and application of incorporating a small amount of Au nanoparticles into a luminescent polymer are investigated. The contents include two parts:
    This first section reports the luminescent and electric properties of phenyl-substituted poly(para-phenylene vinylene) copolymer (HY-PPV) in which Au nanoparticles were incorporated. Incorporating a small amount of Au nanoparticles into HY-PPV film increases the electroluminescence (EL) efficiency and the operating voltage of HY-PPV-based polymer light-emitting diodes (PLEDs) using Al as cathode. These unique behaviors are due to the increase in the density of the effective hole trap centers. In addition, the device performance is found to strongly depend on both the Au nanoparticle/HY-PPV volume ratio and the difference between the work function of Au nanoparticles and the highest occupied molecular orbital (HOMO) of the luminescent polmer.
    In second section, an efficient top-emissive polymer light-emitting diode (T-PLED) employing Ag as a semitransparent cathode is achieved by adding Au nanoparticles to HY-PPV. The efficiency of the T-PLED with Au nanoparticles is 3.4 cd/A, which is much higher than that of the T-PLED without such particles (0.15 cd/A). The superior performance of the device is attributed to the balance between the electron and hole currents induced by the Au nanoparticles, which increases the probability of hole-electron recombination. Furthermore, the device’s stability in air can be significantly improved because of the use of stable electrodes.

    目錄 中文摘要…………………………………………………………………i 英文摘要………………………………………………………………iii 誌謝………………………………………………………………………v 目錄……………………………………………………………………vi 圖目錄…………………………………………………………………ix 表目錄…………………………………………………………………xiv 符號與縮寫……………………………………………………………xv 第一章、緒論 1-1 有機電激發光元件簡介……………………………………………1 1-1-1 前言……………………………………………………………1 1-1-2 有機電激發光元件的起源……………………………………2 1-1-3 OLED與PLED之比較……………………………………………4 1-1-4 PLED之電致發光原理…………………………………………6 1-1-5 穩定金屬陰極之需求與現行技術……………………………9 1-1-6 上發光元件結構與簡介………………………………………13 1-2 金奈米粒子之簡介………………………………………………18 1-2-1 奈米粒子介紹…………………………………………………18 1-2-2 金奈米粒子之性質……………………………………………21 1-2-3金奈米粒子之應用……………………………………………23 1-3 研究動機…………………………………………………………27 第二章、探討金奈米粒子的摻雜對發光高分子及其元件之影響 2-1前言…………………………………………………………………43 2-2 實驗部分…………………………………………………………43 2-2-1 藥品來源………………………………………………………44 2-2-2 金奈米粒子之合成與鑑定…………………………………44 2-2-3 元件組裝與量測………………………………………………45 2-3 結果與討論………………………………………………………50 2-3-1金奈米粒子對發光高分子及其元件的影響…………………50 2-3-2不同金奈米粒子的摻雜濃度對HY-PPV/Au NPs元件的影 響………………………………………………………………………57 2-3-3不同的金屬陰極對HY-PPV/Au NPs元件的影響………………60 2-3-4不同的發光高分子對含有金奈米粒子之元件的影響………62 2-4 結論………………………………………………………………63 第三章、藉金奈米粒子製備具半穿透銀陰極之上發光元件 3-1前言…………………………………………………………………81 3-2 實驗部分…………………………………………………………83 3-3 結果與討論………………………………………………………87 3-3-1金奈米粒子對上發光元件特性之探討………………………87 3-3-2上發光與下發光元件特性之比較……………………………88 3-3-3 發光層厚度對上發光元件的影響...………………………92 3-3-4壽命(Lifetime test)和儲存(Storage test)之測試………95 3-4 結論………………………………………………………………98 第四章、總結與展望…………………………………………………109 參考文獻………………………………………………………………113 著作……………………………………………………………………120 期刊論文………………………………………………………………120 研討會論文……………………………………………………………121 自述……………………………………………………………………122

    1.M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2024 (1963).
    2.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    3.D. Braun, A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
    4.J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539 (1990).
    5.D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
    6.A. J. Heeger and D. Braun (UNIAX), WO-B 92/16023 (1992).
    7.G. Grem, G. Leditzky, B. Ulrich and G. Leising, Adv. Mater., 4, 36 (1992).
    8.M. Hamguchi, H. Sawada, J. Kyokane and K. Yoshino, Chem. Lett., 527 (1992).
    9.S. Gaherith, H. G. Nothoper, U. Scherp and E. J. W. List, Jpn. J. Appl. Phys., 43, L891 (2004).
    10.Y. H. Yao, L. R. Kung and C. S. Hsu, Jpn. J. Appl. Phys. , 44, 7648 (2005).
    11.S. A. VanSlyke, A. Pignate, D. Freeman, N. Redden, D. Waters, H. Kikuchi, T. Negishi, H. Kanno, Y. Nishio, M. Nakai, Proceeding of SID’02, p. 886, June 19-24, 2002, Boston, USA.
    12.J. S. Kim, M. GranstrÖm. R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
    13.S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
    14.T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
    15.Y. -F. Liew, H. Aziz, N. -X. Hu, H. S. -O. Chan, G. Xu, and Z. Popovic, Appl. Phys. Lett., 77, 2650 (2000).
    16.S. Naga, M. Tamekawa, T. Terashita, H. Okada, H. Anada and H. Onnagawa, Synth. Met., 91, 129 (1997).
    17.L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997).
    18.T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, IEEE Trans. Electron. Devices, 44, 1245 (1997).
    19.C. Ganzorig, K. Suga and M. Fujihira, Mater. Sci. Eng. B, 85, 140 (2001).
    20.S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash and N. R. Armstrong, Appl. Phys. Lett., 74, 2324 (1998).
    21.T. Mori, H. Fujikawa, S. Tokito, V. Taga, Appl. Phys. Lett., 73, 2763 (1998).
    22.R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian and N. R. Armstrong, J. Appl. Phys., 84, 6729 (1998).
    23.H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern and M. Stoβel, J. Appl. Phys., 89, 420 (2001).
    24.H. -M. Lee, K. -H. Choi, D. -H. Hwang, L. -M. Do, T. Zyung, J. -W. Lee and J. -K. Park, Appl. Phys. Lett., 72, 2382 (1998).
    25.T. -W. Lee and O. O. Park, Adv. Mater., 13, 1274 (2001).
    26.Q. Xu, J. Ouyang, Y. Yang, T. Ito and J. Kido, Appl. Phys. Lett., 83, 4695 (2003).
    27.X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow and Y. Cao, Appl. Phys. Lett., 84, 3522 (2004).
    28.Y. -H. Niu, H. Ma, Q. Xu, and Alex K. -Y. Jen, Appl. Phys. Lett., 86, 083504 (2005).
    29.T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S, N. Hsieh and Y. S. Fu, Appl. Phys. Lett., 87, 013504 (2005).
    30.T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu and C. T. Chung, Appl. Phys. Lett., 88, 113501 (2006).
    31.S. N. Hsieh, T. Y. Kuo, T. C. Wen, T. F. Guo and Y. L. Lee, J. J. Appl. Phys. 45, L773 (2006).
    32.Z. Xie, L. S. Hung and F. Zhu, Chem. Phys. Lett., 381, 691 (2003).
    33.C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu and C. C. Wu, Appl. Phys. Lett., 83, 5127 (2003).
    34.H. W. Choi, S. Y. Kim, K. -B. Kim, Y. -H. Tak and J. -L. Lee, Appl. Phys. Lett., 86, 012104 (2005).
    35.L. W. Chong, Y. L. Lee, T. C. Wen and T. F. Guo, Appl. Phys. Lett., 89, 233513 (2006).
    36.G. Gu, V. Bulovic, P. E. Burrows, S. R. Forest and M. E. Thompson, Appl. Phys. Lett., 68, 2606 (1996).
    37.G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov and S. R. Forrest, Appl. Phys. Lett., 72, 2138 (1998).
    38.L. S. Hung and C. W. Tang, Appl. Phys. Lett., 74, 3209 (1999).
    39.L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri and J. Madathil, Appl. Phys. Lett., 78, 544 (2001).
    40.R. B. Pode, C. J. Lee, D. G. Moon and J. I. Han, Appl. Phys. Lett., 84, 4614 (2004).
    41.V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest and M. E. Thompson, Appl. Phys. Lett., 70, 2954 (1997).
    42.T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H. H. Johannes and W. Kowalsky, Appl. Phys. Lett., 83, 5071 (2003).
    43.C. W. Chen, C. L. Lin and C. C. Wu, Appl. Phys. Lett., 85, 2469 (2004).
    44.L. Hou, F. Huang, W. Zeng, J. Peng and Y. Cao, Appl. Phys. Lett., 87, 153509 (2005).
    45.J. M. Lehn, Supramolecular Ensemebles, VCH, New York, (1995).
    46.P. Turner, History of Photography, Exeter, New York, (1987).
    47.M. Faraday, Philo. Trans. R. Soc., 147, 145 (1875).
    48.T. Graham, Liquid Diffusion Applied to Analysis, Philo. Trans., 151, 183 (1861).
    49.R. Birringer, H. Gleiter, H.P. Klein and P. Marquardt, Phys. Lett., 102, 365 (1984).
    50.A. Fendler, Chem. Rev., 87, 877 (1987).
    51.J. P. Wilcoxon, A. Martion, R. L. Baughmann, E. Klavetter and A. P. Sylwester, Mat. Res. Soc. Symp. Proc., 286, 131 (1993).
    52.莊萬發, 超微粒子理論應用,復漢出版社 (1994).
    53.盧永坤, 奈米科技概論, 滄海書局 (2005).
    54.M.-C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).
    55.Günter Schmid and B. Corain, Eur. J. Inorg. Chem., 3081 (2003).
    56.G. Mie, Ann. Phys., 25, 377 (1908).
    57.J. Ouyang, C. Chu, C. Szmanda and Y. Yang, Nat. Mater., 3, 918 (2004).
    58.J. Ouyang, C. Chu, R. J.-H. Tseng, A. Prakash and Y. Yang, Proceedings of the IEEE, 93, 1287 (2005).
    59.T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe and C. Adachi, Appl. Phys. Lett., 83, 1252 (2003).
    60.R. J.-H. Tseng, J. Huang, J. Ouyang, R. B. Kaner and Y. Yang, Nano Lett., 5, 1077 (2005).
    61.C. Bechinger, G. Oefinger, S. Hermingaus and P. Leiderer, J. Appl. Phys., 74, 4527 (1993).
    62.T. He, Y. Ma, Y.-a Cao, W.-s Yang, J.-n Yao, Phys. Chem. Chem. Phys., 4, 1637 (2002).
    63.Y. Kaminorz, E. Smela, O. Inganas, L. Brehmer, Adv. Mater., 10, 765 (1998).
    64.R. D. Scurlock, B. J. Wang, P. R. Ogilby, J. R. Sheats and R. I. Clough, J. Am. Chem. Soc., 117, 10194 (1995).
    65.A. P. Monkuan, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett and
    S. Navaratnam, Phys. Rev. Lett., 86, 1358 (2001).
    66.J. H. Park, Y. T. Lim, O. O. Park and Y. C. Kim, Macromol Rapid Commun., 24, 331 (2003).
    67.J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J. W. Yu and Y. C. Kim, Chem. Mater., 16, 688 (2004).
    68.F. Wudl and G. Srdanov, U.S. Patent, NO. 5189136 (1993).
    69.D. I. Gittins, F. Caruso, Angew. Chem. Int. Ed., 40, 3001, (2001).
    70.J. Liu, Y. Shi, L. Ma and Y. Yang, J. Appl. Phys., 88, 605(2000).
    71.R. W. Smith and A. Rose, Phys. Rev., 97, 1531 (1955).
    72.H. S. Nalwa and L. S. Rohwer, Handbook of Luminescence, Display Materials, and Devices, (2003).
    73.M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans and R. W. Murray, Langmuir, 14 ,17 (1998).
    74.J. Ouyang, C. W. Chu, D. Sieves and Y. Yang, Appl. Phys. Lett., 86 123507 (2005).
    75.X. Gong, D. Moses, A. J. Heeger, S. Liu and A. K.-Y. Jen, Appl. Phys. Lett., 83, 183 (2003).
    76.L. Edman, D. Moses and A. J. Heeger, Synth. Met., 138, 441 (2003).
    77.D. M. Pai, J. F. Yanus and M. Stolka, J. Phys. Chem., 88, 4714 (1984).
    78.S. W. Hwang and Y. Chen, Macromolecules, 34, 2981 (2001).
    79.E. J. W. List, C. Creely, G. Leising, N. Schulte, A. D. Schlüter, U. Scherf, K. Müllen and W. Graupner, Chem. Phys. Lett., 325, 132 (2000).
    80.A. Damjanocić, T. Ritz and K. Schulten, Phys. Rev. E, 59, 3293 (1999).
    81.Y. Li, J. Gao, G. Yu, Y. Cao and A. J. Heeger, Chem. Phys. Lett., 287, 83 (1998).
    82.T. F. Guo, G. He, S. Pyo and Y. Yang, Appl. Phys. Lett., 80, 4042 (2002).
    83.X. Yang, D. Neher, D. Hertel and T. K. Däubler, Adv. Mater., 16, 161 (2004).
    84.Y. Y. Noh, C. L. Lee and J. J. Kim, J. Chem. Phys., 118, 2853 (2003).
    85.許博鈞,共軛高分子於發光元件之研究,國立成功大學論文,2003.
    86.S. F. Hsu, C. C. Lee, S. W. Hwang and C. H. Chen, Appl. Phys. Lett., 86, 253508 (2005).
    87.E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cao and G. J. Zydzik, Science, 265, 943 (1994).
    88.Y. Amnon, Optical Electronics in Modern Communications, Oxford University, (1997).
    89.A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma and P. Moretti, Opt. Commun., 189, 281 (2001).
    90.H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong and H. A. Kwok, Appl. Phys. Lett., 88, 073517 (2006).
    91.R. H. Jordan, L. J. Rothberg, A. Dodabalapur and R. E. Slusher, Appl. Phys. Lett., 69, 1997 (1996).
    92.H. Becker, S. E. Burns, N. Tessler and R. H. Friend, J. Appl. Phys. , 81, 2825 (1997).
    93.N. Tessler, S. Burns, H. Becker and R. H. Friend, Appl. Phys. Lett., 70, 556 (1997).
    94.S. Tokito, K. Noda and Y. Taga, Appl. Phys. Lett., 68, 2633 (1996)
    95.A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher and J. M. Phillips, J. Appl. Phys., 80, 6954 (1996).
    96.O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butterworths, London (1962).
    97.M. Schaer, F. Nuesch, D. Berner, W. Leo and L. Zuppiroli, Adv. Funct. Mater., 11, 116 (2001).

    下載圖示 校內:2010-05-21公開
    校外:2010-05-21公開
    QR CODE