簡易檢索 / 詳目顯示

研究生: 吳冠達
Wu, Kuan-Ta
論文名稱: 選擇性雷射燒熔3D列印中雷射熱源於熔融與氣化區域分析模型之建立與驗證
Establishment and Verification of the Models Developed for Melting Zone and Vaporization Zone in Selective Laser Melting 3D Printing
指導教授: 林仁輝
Lin, Jen Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 182
中文關鍵詞: 選擇性雷射燒熔雷射體積熱源熔融區域蒸發區域表面粗糙度
外文關鍵詞: selective laser melting, laser volumetric heat source, surface roughness, temeperature field model, phase field model
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先以工業技術研院雷射與積層製造科技中心提供之選擇性雷射燒熔(Selective laser melting, SLM)單道次列印試件為基礎,分析各加工參數的熔融區域與單道次列印凝固後之表面形貌。隨後以COMSOL Multiphysics多重物理量耦合模擬軟體建立選擇性雷射燒熔的分析理論。
    在本研究中,將相變化熱傳方程式匯入古典熱傳方程式,再建立過渡式雷射體積熱源模型(Transient laser volumetric heat source model),模擬雷射光源對金屬粉末、液態金屬與蒸發後氣化區域的影響。使得本研究的雷射體積熱源模型可適用於選擇性雷射燒熔中更廣泛的加工參數範圍。且在本研究中,熔池寬度和熔池深度的理論值除了與實驗量測值有相似的趨勢外,此兩個熔池尺寸理論值與實驗值的誤差百分比亦介於5~20%之間,進而改善了以往研究中對於熔池尺寸的數值分析有著較高誤差的情況。
    在熱傳模組(Heat transfer modle)計算出的溫度解為基礎之上,本研究於相位場模組(Phase field model)中模擬金屬熔池因表面張力而聚合之流體情形方面,經由對蒸發區域設定合理的金屬熔池回補(Refill)情形,即可有效降低堆積高度中理論值與實驗值的誤差百分比,進而提高加工參數對於堆積過程影響的了解。
    最後,則是比較單道次(Single track)列印之實驗結果與單層面(Single layer)列印之實驗結果,以分析單道次列印對於多道次列印產生之影響。並得知較大的深寬比與較小的金屬熔池與基板接觸角,可降低選擇性雷射燒熔列印後的平均粗糙度(Sa),進而提高列印後的表面品質。

    In this research, we first did the analysis of melting region and surface profile on single track experiment samples by selective laser melting(SLM) from ITRI for stainless steel SS316L.After the analysis of experimental sample, we built the numerical model for SLM with COMSOL Multiphysics by separating the temperature field and fluid field in numerical model, to simplify the analysis process in selective laser melting. We first used the laser volumetric heat source mode to calculate the temperature field in heat transfer model with the simulation of laser beam interacting with powder bed, melting pool and vaporization region. The error percentage between theoretic and experimental values for melting track width and depth in our research was in a range of 5~20%. Based on the solution of temperature field, we used phase field model to simulate the gathering process of melting pool driven by surface tension, and get the solidification height by the appropriate assumption for refilling mechanism in vaporization region. Finally, we compare the experiment results of single track to single layer, and found out the relationship between surface quality of single layer with the melting pool dimensions of single track. We get the result that with the higher value of aspect ratio and smaller contact angle of melting pool with substrate, the surface roughness will be smaller, and we can get the better surface quality in single layer of SLM.

    摘要 I Extended Abstract III 致謝 VI 目錄 VII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-3 研究動機 4 1-4 研究架構 6 第二章 基本理論 7 2-1 雷射理論 7 2-1-1 雷射製程介紹 7 2-1-2 光纖雷射 7 2-1-3 雷射輸出模式 8 2-1-4 雷射與材料之交互性質 8 2-1-5 雷射熱傳模式 9 2-1-6 選擇性雷射燒熔之加工參數 10 2-2 選擇性雷射燒熔數值理論 12 2-2-1 連續方程式 12 2-2-2 動量方程式 12 2-2-3 能量方程式 13 2-2-4 相變化方程式 14 2-2-5 雷射熱傳體積熱源方程式 16 2-2-6 過渡式雷射熱傳體積熱源方程式 19 2-2-7 相場法(Phase Field Method) 21 2-2-8 熱傳邊界條件(Thermal boundary condition) 23 2-3 表面粗糙度 25 2-3-1 表面粗糙度定義 25 2-3-2 表面粗糙度量測方法 26 2-3-3 表面粗糙度表示法 26 第三章 實驗規劃 39 3-1 實驗方法 39 3-2 實驗試件之簡介與特性 40 3-3 實驗設備與流程 41 3-3-1 選擇性雷射燒熔列印實驗 41 3-3-2 表面形貌量測實驗 42 3-3-3 顯微組織觀察實驗 42 第四章 數值模擬方法 56 4-1 數值模擬軟體簡介 56 4-2 材料性質設定 57 4-2-1 金屬粉體之孔隙率 57 4-2-2 金屬粉體之等效熱傳導係數 57 4-2-3 金屬粉體之雷射光源吸收率 58 4-2-4 金屬流體之材料性質 58 4-2-5 相變化材料性質 59 4-3 選擇性雷射燒熔之溫度場求解模型 59 4-3-1 理論模型設定 59 4-3-2 模型幾何與網格建立 61 4-3-3 邊界條件與初始條件 62 4-4 熔池再凝固求解模型 63 4-4-1 選擇性雷射燒熔後之熔池再凝固模型 63 4-4-2 模型幾何與網格建立 64 4-4-3 邊界條件與初始條件 64 第五章 結果與討論 82 5-1 單道次選擇性雷射燒熔(SLM)實驗 82 5-1-1 單道次熔融區域實驗結果分析 83 5-1-2 單道次堆積高度實驗結果分析 84 5-2 單道次選擇性雷射燒熔數值模型 85 5-2-1 單道次熔融區域模擬結果分析 85 5-2-2 單道次堆積高度模擬結果分析 87 5-3 單道次數值模擬與實驗結果比較 87 5-3-1 單道次熔融區域模擬與實驗結果比較 88 5-3-2 單道次堆積高度模擬與實驗結果比較 89 5-3-3 修正後單道次堆積高度模擬與實驗結果比較 90 5-4 單層列印面表面粗糙度實驗結果分析 91 第六章 結論與未來展望 173 6-1 結論 173 6-2 未來展望 174 參考文獻 175

    [1] C. R. Deckard, J. J. Beaman, and J. F. Darrah, "Method for selective laser sintering with layerwise cross-scanning," ed: Google Patents, 1992.
    [2] R. Paul and S. Anand, "Process energy analysis and optimization in selective laser sintering," Journal of Manufacturing Systems, vol. 31, no. 4, pp. 429-437, 2012.
    [3] N. K. Tolochko, M. K. Arshinov, A. V. Gusarov, V. I. Titov, T. Laoui, and L. Froyen, "Mechanisms of selective laser sintering and heat transfer in Ti powder," Rapid prototyping journal, vol. 9, no. 5, pp. 314-326, 2003.
    [4] A. V. Gusarov, I. Yadroitsev, P. Bertrand, and I. Smurov, "Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting," Journal of Heat Transfer, vol. 131, no. 7, pp. 072101-072101-10, 2009.
    [5] W. M. Steen and J. Mazumder, Laser material processing. Springer Science & Business Media, 2010.
    [6] I. A. Roberts, "Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing," 2012.
    [7] L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, and C. Kong, "Welding with high power fiber lasers–a preliminary study," Materials & Design, vol. 28, no. 4, pp. 1231-1237, 2007.
    [8] N. K. Tolochko et al., "Balling processes during selective laser treatment of powders," Rapid Prototyping Journal, vol. 10, no. 2, pp. 78-87, 2004.
    [9] F. Klocke and C. Wagner, "Coalescence behaviour of two metallic particles as base mechanism of selective laser sintering," CIRP Annals-Manufacturing Technology, vol. 52, no. 1, pp. 177-180, 2003.
    [10] A. Simchi, "Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features," Materials Science and Engineering: A, vol. 428, no. 1-2, pp. 148-158, 2006.
    [11] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, "Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel," in 2013 Solid Freeform Fabrication Symposium, 2013, p. 474.
    [12] K. G. Prashanth, S. Scudino, T. Maity, J. Das, and J. Eckert, "Is the energy density a reliable parameter for materials synthesis by selective laser melting?," Materials Research Letters, vol. 5, no. 6, pp. 386-390, 2017.
    [13] J. Ciurana, L. Hernandez, and J. Delgado, "Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material," The International Journal of Advanced Manufacturing Technology, vol. 68, no. 5-8, pp. 1103-1110, 2013.
    [14] R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, "Balling behavior of stainless steel and nickel powder during selective laser melting process," The International Journal of Advanced Manufacturing Technology, vol. 59, no. 9-12, pp. 1025-1035, 2011.
    [15] H. Gong, K. Rafi, N. Karthik, T. Starr, and B. Stucker, "Defect morphology in Ti–6Al–4V parts fabricated by selective laser melting and electron beam melting," in 24rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, Aug, 2013, pp. 12-14.
    [16] K. R. Haijun Gong, Thomas Starr, Brent Stucker, "The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4V Parts Fabricated By Selective Laser Melting and Electron Beam Melting," 2013.
    [17] I. Yadroitsev, P. Bertrand, and I. Smurov, "Parametric analysis of the selective laser melting process," Applied Surface Science, vol. 253, no. 19, pp. 8064-8069, 2007.
    [18] S. Kolossov, E. Boillat, R. Glardon, P. Fischer, and M. Locher, "3D FE simulation for temperature evolution in the selective laser sintering process," International Journal of Machine Tools and Manufacture, vol. 44, no. 2-3, pp. 117-123, 2004.
    [19] G. Bugeda Miguel Cervera and G. Lombera, "Numerical prediction of temperature and density distributions in selective laser sintering processes," Rapid Prototyping Journal, vol. 5, no. 1, pp. 21-26, 1999.
    [20] M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C. Glorieux, "Photopyroelectric measurement of thermal conductivity of metallic powders," Journal of Applied Physics, vol. 97, no. 2, p. 024905, 2005.
    [21] S. S. Sih and J. W. Barlow, "The prediction of the emissivity and thermal conductivity of powder beds," Particulate Science and Technology, vol. 22, no. 4, pp. 427-440, 2004.
    [22] S. Yagi and D. Kunii, "Studies on effective thermal conductivities in packed beds," AIChE Journal, vol. 3, no. 3, pp. 373-381, 1957.
    [23] J.-P. Kruth, G. Levy, F. Klocke, and T. Childs, "Consolidation phenomena in laser and powder-bed based layered manufacturing," CIRP annals, vol. 56, no. 2, pp. 730-759, 2007.
    [24] X. Wang, T. Laoui, J. Bonse, J.-P. Kruth, B. Lauwers, and L. Froyen, "Direct selective laser sintering of hard metal powders: experimental study and simulation," The International Journal of Advanced Manufacturing Technology, vol. 19, no. 5, pp. 351-357, 2002.
    [25] C. D. Boley, S. C. Mitchell, A. M. Rubenchik, and S. S. Wu, "Metal powder absorptivity: modeling and experiment," Appl Opt, vol. 55, no. 23, pp. 6496-500, Aug 10 2016.
    [26] A. Streek, P. Regenfuss, and H. Exner, "Fundamentals of Energy Conversion and Dissipation in Powder Layers during Laser Micro Sintering," Physics Procedia, vol. 41, pp. 858-869, 2013.
    [27] L. Dong, A. Makradi, S. Ahzi, and Y. Remond, "Finite element analysis of temperature and density distributions in selective laser sintering process," in Materials science forum, 2007, vol. 553, pp. 75-80: Trans Tech Publ.
    [28] I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, "Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution," Journal of Alloys and Compounds, vol. 583, pp. 404-409, 2014.
    [29] J. Yin et al., "A finite element model of thermal evolution in laser micro sintering," The International Journal of Advanced Manufacturing Technology, vol. 83, no. 9-12, pp. 1847-1859, 2015.
    [30] A. V. Gusarov and J. P. Kruth, "Modelling of radiation transfer in metallic powders at laser treatment," International Journal of Heat and Mass Transfer, vol. 48, no. 16, pp. 3423-3434, 2005.
    [31] A. Hussein, L. Hao, C. Yan, and R. Everson, "Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting," Materials & Design (1980-2015), vol. 52, pp. 638-647, 2013.
    [32] G. Vastola, G. Zhang, Q. X. Pei, and Y. W. Zhang, "Modeling and control of remelting in high-energy beam additive manufacturing," Additive Manufacturing, vol. 7, pp. 57-63, 2015.
    [33] J. Romano, L. Ladani, and M. Sadowski, "Thermal Modeling of Laser Based Additive Manufacturing Processes within Common Materials," Procedia Manufacturing, vol. 1, pp. 238-250, 2015.
    [34] R. Andreotta, L. Ladani, and W. Brindley, "Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties," Finite Elements in Analysis and Design, vol. 135, pp. 36-43, 2017.
    [35] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. i. Golabi, "Finite Element Simulation of Selective Laser Melting process considering Optical Penetration Depth of laser in powder bed," Materials & Design, vol. 89, pp. 255-263, 2016.
    [36] K. Zeng, D. Pal, and B. Stucker, "A review of thermal analysis methods in Laser Sintering and Selective Laser Melting," in Proceedings of Solid Freeform Fabrication Symposium Austin, TX, 2012, pp. 796-814.
    [37] D. Dai and D. Gu, "Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder," International Journal of Machine Tools and Manufacture, vol. 88, pp. 95-107, 2015.
    [38] C. Walsh, "Laser welding–literature review," Materials Science and Metallurgy Department, University of Cambridge, England, 2002.
    [39] AMADA, "Laser Welding Fundamentals."
    [40] A. M. Chelladurai, K. A. Gopal, S. Murugan, S. Venugopal, and T. Jayakumar, "Energy Transfer Modes in Pulsed Laser Seam Welding," Materials and Manufacturing Processes, vol. 30, no. 2, pp. 162-168, 2014.
    [41] E. Assuncao and S. Williams, "Effect of material properties on the laser welding mode limits," Journal of Laser Applications, vol. 26, no. 1, p. 012008, 2014.
    [42] J. Goldak, A. Chakravarti, and M. Bibby, "A new finite element model for welding heat sources," Metallurgical transactions B, vol. 15, no. 2, pp. 299-305, 1984.
    [43] S. Bag, A. Trivedi, and A. De, "Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source," International Journal of Thermal Sciences, vol. 48, no. 10, pp. 1923-1931, 2009.
    [44] A. Trivedi and P. Chauhan, "Modeling of Welding Heat Source for Laser Spot Welding Process," 2011.
    [45] R. Daneshkhah, M. Najafi, and H. Torabian, "Numerical simulation of weld pool shape during laser beam welding," Int. J. Appl. Basic Sci, vol. 3, no. 8, pp. 1624-1630, 2012.
    [46] H. Wang, Y. Shi, and S. Gong, "Numerical simulation of laser keyhole welding processes based on control volume methods," Journal of Physics D: Applied Physics, vol. 39, no. 21, pp. 4722-4730, 2006.
    [47] Y. Ai, P. Jiang, X. Shao, P. Li, and C. Wang, "A three-dimensional numerical simulation model for weld characteristics analysis in fiber laser keyhole welding," International Journal of Heat and Mass Transfer, vol. 108, pp. 614-626, 2017.
    [48] T. Burakowski and T. Wierzchon, Surface engineering of metals: principles, equipment, technologies. CRC press, 1998.
    [49] D. Bergström, A. Kaplan, and J. Powell, "Mathematical modelling of laser absorption mechanisms in metals: A review," The Absorption of Laser Light by Rough Metal Surfaces, p. 19, 2008.
    [50] 楊隆昌, "雷射發展的趨勢與應用," 中工高雄會刊 第22卷 第1期, pp. 22-33, 2014.
    [51] D. Richardson, J. Nilsson, and W. Clarkson, "High power fiber lasers: current status and future perspectives," JOSA B, vol. 27, no. 11, pp. B63-B92, 2010.
    [52] J. Limpert et al., "The rising power of fiber lasers and amplifiers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 3, pp. 537-545, 2007.
    [53] E. Assuncao and S. Williams, "Comparison of continuous wave and pulsed wave laser welding effects," Optics and lasers in Engineering, vol. 51, no. 6, pp. 674-680, 2013.
    [54] M. S. Brown and C. B. Arnold, "Fundamentals of laser-material interaction and application to multiscale surface modification," in Laser precision microfabrication: Springer, 2010, pp. 91-120.
    [55] D. Weckman, H. Kerr, and J. Liu, "The effects of process variables on pulsed Nd: YAG laser spot welds: Part II. AA 1100 aluminum and comparison to AISI 409 stainless steel," Metallurgical and Materials Transactions B, vol. 28, no. 4, pp. 687-700, 1997.
    [56] J. Liu, D. Weckman, and H. Kerr, "The effects of process variables on pulsed Nd: YAG laser spot welds: Part I. AISI 409 stainless steel," Metallurgical Transactions B, vol. 24, no. 6, pp. 1065-1076, 1993.
    [57] COMSOL, "Heat Transfer Module," 2015.
    [58] P. N. Q. J.J. Valencia, "Thermophysical properties, Casting," ASM Handbook International, vol. 15, pp. pp. 468–481., 2008.
    [59] H. Hu and S. A. Argyropoulos, "Mathematical modelling of solidification and melting: a review," Modelling and Simulation in Materials Science and Engineering, vol. 4, no. 4, p. 371, 1996.
    [60] P. Xia et al., "Prediction of weld shape for fiber laser keyhole welding based on finite element analysis," The International Journal of Advanced Manufacturing Technology, vol. 75, no. 1-4, pp. 363-372, 2014.
    [61] S. Tsirkas, P. Papanikos, and T. Kermanidis, "Numerical simulation of the laser welding process in butt-joint specimens," Journal of materials processing technology, vol. 134, no. 1, pp. 59-69, 2003.
    [62] N. Moelans, B. Blanpain, and P. Wollants, "An introduction to phase-field modeling of microstructure evolution," Calphad, vol. 32, no. 2, pp. 268-294, 2008.
    [63] COMSOL, "CFD Module UsersGuide," 2017.
    [64] P. Sahoo, T. DebRoy, and M. McNallan, "Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy," Metallurgical transactions B, vol. 19, no. 3, pp. 483-491, 1988.
    [65] P. Yue, J. J. Feng, C. Liu, and J. Shen, "A diffuse-interface method for simulating two-phase flows of complex fluids," Journal of Fluid Mechanics, vol. 515, pp. 293-317, 2004.
    [66] M. Tsai and S. Kou, "Marangoni convection in weld pools with a free surface," International Journal for Numerical Methods in Fluids, vol. 9, no. 12, pp. 1503-1516, 1989.
    [67] T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
    [68] T. Anthony and H. Cline, "Surface rippling induced by surface‐tension gradients during laser surface melting and alloying," Journal of Applied Physics, vol. 48, no. 9, pp. 3888-3894, 1977.
    [69] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, and H. Soliman, "Roughness parameters," Journal of Materials Processing Technology, vol. 123, no. 1, pp. 133-145, 2002.
    [70] 工業技術研究院雷射與積層製造科技中心, 2018.
    [71] C. M. Taylor, "Direct laser sintering of stainless steel: thermal experiments and numerical modelling," University of Leeds, 2004.
    [72] C. Chan, J. Mazumder, and M. Chen, "A two-dimensional transient model for convection in laser melted pool," Metallurgical Transactions A, vol. 15, no. 12, pp. 2175-2184, 1984.
    [73] K. Kazemi and J. A. Goldak, "Numerical simulation of laser full penetration welding," Computational Materials Science, vol. 44, no. 3, pp. 841-849, 2009.
    [74] N. S. Shanmugam, G. Buvanashekaran, and K. Sankaranarayanasamy, "Finite Element Simulation of Nd: YAG laser lap welding of AISI 304 Stainless steel sheets," Recent Advances in Mechanical Engineering and Automatic Control, pp. 174-179, 2009.
    [75] S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, "Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones," Acta Materialia, vol. 108, pp. 36-45, 2016.
    [76] S. Ueda, A. Cramb, H. Shi, X. Jiang, and H. Shibata, "The contact angle between liquid iron and a single crystal, alumina substrate at 1873 K: effects of oxygen and droplet size," Metallurgical and Materials Transactions B, vol. 34, no. 5, pp. 503-508, 2003.
    [77] A. Kaplan, "Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence," Applied Physics Letters, vol. 101, no. 15, p. 151605, 2012.
    [78] COMSOL, "COMSOL Material Library," 2017.
    [79] I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, "Single track formation in selective laser melting of metal powders," Journal of Materials Processing Technology, vol. 210, no. 12, pp. 1624-1631, 2010.

    下載圖示 校內:2023-07-31公開
    校外:2023-07-31公開
    QR CODE