簡易檢索 / 詳目顯示

研究生: 黃建瑋
Huang, Chien-Wei
論文名稱: 鎳基超合金(Inconel 625)於高速荷載下之高溫塑變行為與差排結構分析
High temperature deformation behaviour and dislocation substructure of impacted Inconel 625 alloy
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 136
中文關鍵詞: 霍普金森桿Inconel 625鎳基超合金高溫變形高應變速率差排密度
外文關鍵詞: Hopkinson bar, Inconel 625 alloy, high temperature deformation, high strain rate, dislocation density
相關次數: 點閱:160下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是使用霍普金森桿撞擊試驗機,分別於不同溫度和高應變速率荷載下測試Inconel 625合金之塑性變形行為下的機械性質及微觀結構變化。分別於應變速率3700s-1、5000s-1和6400s-1及實驗溫度25℃、300℃、750℃下進行試驗,以了解溫度及應變速率對材料塑變行為及微觀結構之影響。
    實驗結果指出,Inconel 625合金在相同溫度條件下,其塑流應力值、加工硬化率及應變速率敏感性係數均會隨應變速率之增加而上升,而熱活化體積則會下降。相反地,在相同應變速率條件下,其塑流應力值、加工硬化率與應變速率敏感性係數則會隨溫度之增加而下降,而熱活化體積則會上升。此外,可以藉由Zerilli-Armstrong構成方程式,來精確的預測此合金在不同溫度及應變速率下的塑變行為。
    在微觀方面,由光學顯微鏡之觀測,可以觀察到Inconel 625合金經過撞擊後有MC與M23C6碳化物之析出,並且於750℃之實驗條件下出現沿晶破壞;在穿透式電子顯微鏡下則可觀測到原本散亂在母材之差排,遭受撞擊後,差排會糾結在一起,且差排密度會隨著應變速率上升和溫度降低而增加,其關聯性可用Bailey-Hirsch type關係式來描述。

    Dynamic impact response and microstructural characteristics of Inconel 625 alloy are investigated under strain rates ranging from 3700s−1 to 6400s−1 and different temperatures of 25ºC, 300ºC and 750ºC, respectively, using a compressive split-Hopkinson pressure bar. The results indicate that mechanical properties of Inconel 625 alloy are sensitive to temperature and strain rate. At a constant temperature, flow stress, work hardening rate, strain rate sensitivity and temperature sensitivity all increase, but the thermal activation volume and activation energy decrease with the increasing strain rate. However, at a constant strain rate, flow stress, work hardening rate, strain rate sensitivity, and temperature sensitivity decrease but the thermal activation volume and activation energy increase with increasing temperature. A Zerilli-Armstrong constitutive equation is used to describe the deformation behavior of Inconel 625 alloy under tested conditions. Optical Microscope(OM) observations reveal that there are MC and M23C6 carbides participated in Inconel 625 alloy. The intergranular crack and failure are observed under 750ºC condition. Furthermore, Transmission Electron Microscopy(TEM) observations show that the dislocation density increases with increasing strain rate, but decreases with increasing temperature. The relationship between the dislocation density and the stress can be expressed using the Bailey-Hirsch equation.

    中文摘要 I ABSTRACT II 致謝 VIII 總目錄 IX 表目錄 XII 圖目錄 XIII 符號說明 XX 第一章 前言 1 第二章 理論與文獻回顧 4 2-1鎳基合金之介紹 4 2-1-1超合金之介紹 4 2-1-2鎳金合金之特色與分類 4 2-1-3鎳基合金的強化機構 5 2-2 Inconel 625合金之介紹 6 2-2-1 Inconel 625合金之特性 6 2-2-2物理性質與機械性質[21] 7 2-2-3 Inconel 625之工業應用 7 2-3塑性變形之機械測試類別 8 2-4一維波傳理論 9 2-5霍普金森撞擊試驗機之原理 11 2-6塑性變形機制 13 2-6-1恆溫機構 15 2-6-2熱活化機制 15 2-6-3差排黏滯機制 17 2-7構成方程式 17 第三章 實驗方法及步驟 34 3-1實驗流程 34 3-2實驗儀器與設備 34 3-2-1CNC放電加工線切割機 34 3-2-2研磨拋光機 35 3-2-3動態機械性質測試系統:霍普金森撞擊試驗機 35 3-2-4加熱裝置 37 3-2-5慢速切割機 37 3-2-6雙噴射式電解拋光機 37 3-2-7光學顯微鏡 37 3-2-8穿透式電子顯微鏡 38 3-3實驗步驟 38 3-3-1實驗試件製備 38 3-3-2動態衝擊試驗 39 3-3-3試件金相之觀察(OM) 40 3-3-4穿透式電子顯微鏡(TEM)試片製備 40 第四章 實驗結果與討論 43 4-1應力-應變曲線 43 4-2加工硬化 43 4-3應變速率敏感性係數 45 4-4熱活化體積 46 4-5活化能 48 4-6溫度敏感性係數 49 4-7應變速率及溫度綜合效應 50 4-8理論溫升量 51 4-9材料構成方程式 52 4-10光學顯微鏡金相組織觀察(OM) 53 4-11穿透式電子顯微鏡(TEM)結構觀察 55 第五章 結論 129 參考文獻 131

    [1] F. G. Hodge, "The history of solid-solution-strengthened Ni alloys for aqueous corrosion service," JOM, vol. 58, pp. 28-31, 2006.
    [2] G. P. Dinda, A. K. Dasgupta, and J. Mazumder, "Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability," Materials Science and Engineering: A, vol. 509, pp. 98-104, 5/25/ 2009.
    [3] C. Thomas and P. Tait, "The performance of Alloy 625 in long-term intermediate temperature applications," International Journal of Pressure Vessels and Piping, vol. 59, pp. 41-49, 1994/01/01 1994.
    [4] K. Jemielniak, J. Kossakowska, and T. Urbański, "Application of wavelet transform of acoustic emission and cutting force signals for tool condition monitoring in rough turning of Inconel 625," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 225, pp. 123-129, 2011.
    [5] V. Shankar, K. Bhanu Sankara Rao, and S. L. Mannan, "Microstructure and mechanical properties of Inconel 625 superalloy," Journal of Nuclear Materials, vol. 288, pp. 222-232, 2// 2001.
    [6] L. Tan, X. Ren, K. Sridharan, and T. R. Allen, "Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants," Corrosion Science, vol. 50, pp. 3056-3062, 11// 2008.
    [7] K. Ehrlich, J. Konys, and L. Heikinheimo, "Materials for high performance light water reactors," Journal of Nuclear Materials, vol. 327, pp. 140-147, 5/1/ 2004.
    [8] H. Kolsky, "An Investigation of the Mechanical Properties of Materials at very High Rates of Loading," Proceedings of the Physical Society. Section B, vol. 62, p. 676, 1949.
    [9] B. Butcher and C. Karnes, "Strain‐Rate Effects in Metals," Journal of Applied Physics, vol. 37, pp. 402-411, 1966.
    [10] F. E. Hauser, "Techniques for measuring stress-strain relations at high strain rates," Experimental Mechanics, vol. 6, pp. 395-402, 1966.
    [11] D. Steinberg, S. Cochran, and M. Guinan, "A constitutive model for metals applicable at high‐strain rate," Journal of Applied Physics, vol. 51, pp. 1498-1504, 1980.
    [12] M. A. Meyers, Dynamic behavior of materials: John wiley & sons, 1994.
    [13] I. A. Choudhury and M. A. El-Baradie, "Machinability of nickel-base super alloys: a general review," Journal of Materials Processing Technology, vol. 77, pp. 278-284, 5/1/ 1998.
    [14] M. J. Donachie and S. J. Donachie, Superalloys: a technical guide: ASM international, 2002.
    [15] M. Durand-Charre, The microstructure of superalloys: CRC press, 1998.
    [16] M. J. Donachie Jr, J. Matthew, and J. Donachie, "Superalloys sourcebook', 1984," Metals Park, OH, ASM International.
    [17] 陳永璋, "鎳基超合金之材料相關知識," 銲接園地, pp. 31-40, 2000.
    [18] 陳永璋、陳建銘, "鎳基合金之特性與其銲接方法," 銲接園地, pp. 13-26, 2000.
    [19] 李名言, "鎳基合金材質特性介紹," 中工高雄會刊, vol. 21.
    [20] P. Ganesan, C. Renteria, and J. Crum, "Versatile Corrosion Resistance of INCONEL” alloy 625 in Various."
    [21] "Inconel alloy 625," ed: Special Metals Alloy, 2013, p. 3.
    [22] U. S. Lindholm, "High strain rate tests," Techniques of metals research, vol. 5, 1971.
    [23] U. Lindholm and L. Yeakley, "High strain-rate testing: tension and compression," Experimental Mechanics, vol. 8, pp. 1-9, 1968.
    [24] B. Dodd, "Adiabatic shear localization: occurrence, theories, and applications," 1992.
    [25] J. Achenbach, Wave propagation in elastic solids vol. 16: Elsevier, 2012.
    [26] W.-S. Lee and C.-F. Lin, "Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures," Materials Science and Engineering: A, vol. 241, pp. 48-59, 1998.
    [27] A. Kumar, F. Hauser, and J. Dorn, "Viscous drag on dislocations in aluminum at high strain rates," Acta Metallurgica, vol. 16, pp. 1189-1197, 1968.
    [28] J. Campbell and W. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel," Philosophical Magazine, vol. 21, pp. 63-82, 1970.
    [29] R. Broudy, "Dislocations and Mechanical Properties of Crystals," Journal of the American Chemical Society, vol. 80, pp. 5009-5010, 1958.
    [30] H. Conrad, "Thermally activated deformation of metals," JOM, vol. 16, pp. 582-588, 1964.
    [31] W. Ferguson, A. Kumar, and J. Dorn, "Dislocation damping in aluminum at high strain rates," Journal of Applied Physics, vol. 38, pp. 1863-1869, 2004.
    [32] J. Campbell and A. Dowling, "The behaviour of materials subjected to dynamic incremental shear loading," Journal of the Mechanics and Physics of Solids, vol. 18, pp. 43-63, 1970.
    [33] J. Campbell, "Dynamic plasticity: macroscopic and microscopic aspects," Materials Science and Engineering, vol. 12, pp. 3-21, 1973.
    [34] Y. Bai and B. Dodd, "Adiabatic Shear Localization: Occurrence, Theories and Applications, 1992," ed: Pergamon Press, Oxford.
    [35] Z. Gronostajski, "The constitutive equations for FEM analysis," Journal of Materials Processing Technology, vol. 106, pp. 40-44, 2000.
    [36] P. Ludwik, Elemente der technologischen Mechanik: J. Springer, 1909.
    [37] T. Vinh, M. Afzali, and A. Roche, "Fast fracture of some usual metals at combined high strain and high strain rate," ed: INSTITUT SUPERIEUR DES MATERIAUX ET DE LA CONSTRUCTION MECANIQUE SAINT-OUEN (FRANCE), 1980.
    [38] H. Kobayashi and B. Dodd, "A numerical analysis for the formation of adiabatic shear bands including void nucleation and growth," International journal of impact engineering, vol. 8, pp. 1-13, 1989.
    [39] H. Kobayashi and B. Dodd, "Formation of adiabatic shear bands in steel and titanium twisted at dynamic rates," J. Jpn. Soc. Technol. Plast., vol. 29, pp. 1152-1158, 1988.
    [40] R. Liang and A. S. Khan, "A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures," International Journal of Plasticity, vol. 15, pp. 963-980, 1999.
    [41] F. Zerilli and R. Armstrong, "The effect of dislocation drag on the stress-strain behavior of FCC metals," Acta Metallurgica et Materialia, vol. 40, pp. 1803-1808, 1992.
    [42] F. J. Zerilli and R. W. Armstrong, "Constitutive equation for HCP metals and high strength alloy steels," High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, pp. 121-126, 1995.
    [43] G. R. Johnson and W. H. Cook, "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures," in Proceedings of the 7th International Symposium on Ballistics, 1983, pp. 541-547.
    [44] L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K. Staudhammer, "A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study," Journal of materials processing technology, vol. 182, pp. 319-326, 2007.
    [45] D. Umbrello, R. M’saoubi, and J. Outeiro, "The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel," International Journal of Machine Tools and Manufacture, vol. 47, pp. 462-470, 2007.
    [46] U. Andrade, M. Meyers, and A. H. Chokshi, "Constitutive description of work-and shock-hardened copper," Scripta metallurgica et materialia, vol. 30, pp. 933-938, 1994.
    [47] D. Klahn, A. Mukherjee, and J. Dorn, "STRAIN-RATE EFFECTS," California Univ., Berkeley. Lawrence Radiation Lab.1970.
    [48] G. Vandervoort, J. Bowman, and R. Frank, "Microstructural characterization of custom age 625-PLUS (R) alloy," Superalloys 718, 625, 706 and Various Derivatives, pp. 489-498, 1994.
    [49] D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, "The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy," Materials & Design, vol. 32, pp. 696-705, 2011.
    [50] S. Esmaeili, L. Cheng, A. Deschamps, D. Lloyd, and W. Poole, "The deformation behaviour of AA6111 as a function of temperature and precipitation state," Materials Science and Engineering: A, vol. 319, pp. 461-465, 2001.
    [51] B. Viguier, "Dislocation densities and strain hardening rate in some intermetallic compounds," Materials Science and Engineering: A, vol. 349, pp. 132-135, 2003.
    [52] D. Chu and J. Morris, "The influence of microstructure on work hardening in aluminum," Acta materialia, vol. 44, pp. 2599-2610, 1996.
    [53] U. Andrade, M. Meyers, and A. Chokshi, "Constitutive description of work-and shock-hardened copper," Scripta metallurgica et materialia, vol. 30, pp. 933-938, 1994.
    [54] L. Shi and D. Northwood, "The mechanical behavior of an AISI type 310 stainless steel," Acta metallurgica et materialia, vol. 43, pp. 453-460, 1995.
    [55] M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, "Precipitation of the δ-Ni3Nb phase in two nickel base superalloys," Metallurgical transactions A, vol. 19, pp. 453-465, 1988.
    [56] W.-S. Lee and C.-Y. Liu, "Comparison of dynamic compressive flow behavior of mild and medium steels over wide temperature range," Metallurgical and materials Transactions A, vol. 36, pp. 3175-3186, 2005.
    [57] C. Zener and J. Hollomon, "Effect of strain rate upon plastic flow of steel," Journal of Applied physics, vol. 15, pp. 22-32, 1944.
    [58] J. Jonas, C. Sellars, and W. M. Tegart, "Strength and structure under hot-working conditions," Metallurgical Reviews, vol. 14, pp. 1-24, 1969.
    [59] L. Farbaniec, A. Abdul-Latif, J. Gubicza, and G. Dirras, "Ultrafine-grained nickel refined by dislocation activities at intermediate strain rate impact: deformation microstructure and mechanical properties," Journal of Materials Science, vol. 47, pp. 7932-7938, 2012.
    [60] K. H. Song and K. Nakata, "Mechanical properties of friction-stir-welded inconel 625 alloy," Materials transactions, vol. 50, pp. 2498-2501, 2009.
    [61] L. M. Suave, D. Bertheau, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, et al., "Impact of Thermomechanical Aging on Alloy 625 High Temperature Mechanical Properties," in 8th International Symposium on Superalloy 718 and Derivatives, pp. 317-331.
    [62] L. Ferrer, B. Pieraggi, and J. Uginet, "Microstructural evolution during thermomechanical processing of alloy 625," Superalloys, vol. 718, pp. 217-228, 1991.
    [63] L. Liu, T. Jin, N. Zhao, X. Sun, H. Guan, and Z. Hu, "Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy," Materials Science and Engineering: A, vol. 361, pp. 191-197, 2003.
    [64] R. Ham, "The determination of dislocation densities in thin films," Philosophical Magazine, vol. 6, pp. 1183-1184, 1961.
    [65] J. R. Davis, "ASM specialty handbook: nickel, cobalt, and their alloys," ASM International, Member/Customer Service Center, Materials Park, OH 44073-0002, USA, 2000. 442, 2000.
    [66] R. Decker and C. Sims, "The superalloys," ed: John Wiley & Sons, Inc., New York, 1972, p. 37.
    [67] S. Floreen, G. E. Fuchs, and W. J. Yang, "The metallurgy of alloy 625," Superalloys, vol. 718, pp. 13-37, 1994.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE