簡易檢索 / 詳目顯示

研究生: 江宜倫
Chiang, Yi-Lun
論文名稱: 探討在新生兒腦缺氧動物模型中流體剪力及紅黴素刺激之內皮細胞作用
Shear stress and erythromycin stimulations in endothelial cells for treatment of neonatal hypoxic-ischemia brain injury
指導教授: 吳佳慶
Wu, Chia-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 40
中文關鍵詞: 內皮細胞分化流體剪力腦缺氧模型紅黴素CXCR4
外文關鍵詞: endothelial differentiation, shear stress, brain hypoxic-ischemia model, erythromycin, CXCR4
相關次數: 點閱:99下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幹細胞可分化成多種細胞,其中亦包含血管內皮細胞,然而,諸多因素導致幹細胞取得不易且分化效果不彰。本實驗室先前研究發現,可利用流體剪力模擬血流,結合化學因子,刺激幹細胞分化形成內皮細胞,然其分子調控機制尚不明。多項研究指出在流體剪力刺激下,會活化幹細胞的生長分化,調控動靜脈內皮細胞分化。
    本研究將以人類臍靜脈內皮細胞(human umbilical vein endothelial call, HUVEC)建立腦缺氧動物模型,以利流體剪力刺激分化後之細胞應用。在腦缺氧動物模型中,給予臍靜脈內皮細胞,將降低腦損傷,並減少大腦細胞死亡。層流(laminar)刺激後之臍靜脈內皮細胞較未刺激之細胞無明顯修復效果。紅黴素(erythromycin, EM)處理後之臍靜脈內皮細胞具有較高CXCR4表現。在不同層流及紅黴素結合方式刺激下,層流刺激後再以紅黴素處理之細胞具有較多CXCR4表現,並有高度修復大腦之效果。在此動物模型中,我們成功建立內皮細胞修復大腦組織模型;並可藉由增加CXCR4表現,而增加內皮細胞修復效用。

    Stem cells can differentiate to endothelial lineage as a source for tissue engineering of vessels. However, the rarity of cell source and low differentiation efficiency are the main limitation for stem cell therapy in vessel regeneration. Our previously study demonstrated a successful endothelial cell (EC) differentiation by integration of biomechanical force and chemical factors, but the mechanism is still unknown. Furthermore, we build up a cell therapy of brain hypoxic-ischemia (HI) model by using human umbilical vein endothelial cells (HUVECs). The differentiated cells will apply to this animal model in the future. By static HUVECs transplantation in brain HI model, brain injury and cell death were decreased. Laminar shear stress (LSS)-treated HUVECs group in animal model had not significantly repair function than static HUVECs. Previously research indicates that CXCR4, a chemoattractant receptor, is reduced by LSS. One paper showed that erythromycin (EM) increased CXCR4 expression. Therefore, we combined LSS with EM to stimulate HUVECs. We found that EM treatment after LSS stimulation of HUVEC transplantation was useful for rescuing brain injury. In this study, we built up successful cell therapy for brain injury model. Furthermore, repair function of ECs can be enlarged by increasing EM-induced CXCR4 expression.

    中文摘要 i Abstract ii Acknowledgement iii Contents iv Background 1 Stem cell in vascular therapy 1 Embryonic stem cells 1 Adult stem cells 1 Endothelial progenitor cells 2 Shear stress in vascular system 3 Mechanotransduction of stem cell differentiation and proliferation 5 Animal model of cell therapy in neonatal hypoxic-ischemia (HI) brain injury 6 Hypothesis 8 Specific aims 8 Significance 9 Materials and methods 10 Cell isolation and culture 10 Animal model 10 Shear stress experiments 11 Western Blot 11 Reverse transcription-polymerase chain reaction (RT-PCR) 12 Cell death assay 12 Immunohistological staining 12 Nissl staining 13 Terminal dUTP Nick-End Labeling (TUNEL) Staining 13 In vivo cell tracing model 13 Cell migration assay 13 Statistics 14 Result 15 Erythromycin combine with LSS provide beneficial effects for HUVEC 15 Decrease of CXCR4 by siRNA reduced expression of CXCR4 16 Application of HUVECs as EPC source for neonatal HI brain injury model 17 Discussion 19 References 22 Figures 27

    Abbott, J. D., Y. Huang, et al. (2004). "Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury." Circulation 110(21): 3300-5.
    Abou Alaiwi, W. A., S. T. Lo, et al. (2009). "Primary cilia: highly sophisticated biological sensors." Sensors (Basel) 9(9): 7003-20.
    Adamo, L., O. Naveiras, et al. (2009). "Biomechanical forces promote embryonic haematopoiesis." Nature 459(7250): 1131-5.
    Ali, F., M. Zakkar, et al. (2009). "Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow." J Biol Chem 284(28): 18882-92.
    Alvarez-Buylla, A., B. Seri, et al. (2002). "Identification of neural stem cells in the adult vertebrate brain." Brain Res Bull 57(6): 751-8.
    Bagley, R. G., J. Walter-Yohrling, et al. (2003). "Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells." Cancer Res 63(18): 5866-73.
    Baudin, B., A. Bruneel, et al. (2007). "A protocol for isolation and culture of human umbilical vein endothelial cells." Nat Protoc 2(3): 481-5.
    Beachy, P. A., S. S. Karhadkar, et al. (2004). "Tissue repair and stem cell renewal in carcinogenesis." Nature 432(7015): 324-31.
    Brambrink, A. M., I. P. Koerner, et al. (2006). "The antibiotic erythromycin induces tolerance against transient global cerebral ischemia in rats (pharmacologic preconditioning)." Anesthesiology 104(6): 1208-15.
    Chachisvilis, M., Y. L. Zhang, et al. (2006). "G protein-coupled receptors sense fluid shear stress in endothelial cells." Proc Natl Acad Sci U S A 103(42): 15463-8.
    Chavakis, E. and S. Dimmeler (2011). "Homing of progenitor cells to ischemic tissues." Antioxid Redox Signal 15(4): 967-80.
    Chien, S. (2007). "Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell." Am J Physiol Heart Circ Physiol 292(3): H1209-24.
    Chien, S. (2008). "Effects of disturbed flow on endothelial cells." Ann Biomed Eng 36(4): 554-62.
    Clotilde Gimond, S. M. a. G. P. (2006). "Differentiation of Mouse Embryonic Stem Cells Into Endothelial Cells." Methods in Molecular Biology 330(III): 303-329.
    Craig, T. A., R. Bhattacharya, et al. "Sclerostin binds and regulates the activity of cysteine-rich protein 61." Biochem Biophys Res Commun 392(1): 36-40.
    Cui, Y. and P. Madeddu (2011). "The role of chemokines, cytokines and adhesion molecules in stem cell trafficking and homing." Curr Pharm Des 17(30): 3271-9.
    Davis, M. E., I. M. Grumbach, et al. (2004). "Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding." J Biol Chem 279(1): 163-8.
    Desaki, M., H. Okazaki, et al. (2004). "Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: possible role in the signaling pathway that regulates nuclear factor-kappaB activation." Antimicrob Agents Chemother 48(5): 1581-5.
    Du, W., J. Huang, et al. (2010). "Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats." J Clin Invest 120(10): 3480-92.
    Eren, P., S. Camus, et al. (2009). "Adiponectinemia controls pro-angiogenic cell therapy." Stem Cells 27(11): 2712-21.
    Ferriero, D. M. and S. P. Miller (2010). "Imaging selective vulnerability in the developing nervous system." J Anat 217(4): 429-35.
    Heeschen, C., A. Aicher, et al. (2003). "Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization." Blood 102(4): 1340-6.
    Helmlinger, G., R. V. Geiger, et al. (1991). "Effects of pulsatile flow on cultured vascular endothelial cell morphology." J Biomech Eng 113(2): 123-31.
    Hill, J. M., G. Zalos, et al. (2003). "Circulating endothelial progenitor cells, vascular function, and cardiovascular risk." N Engl J Med 348(7): 593-600.
    Hur, J., C. H. Yoon, et al. (2004). "Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis." Arterioscler Thromb Vasc Biol 24(2): 288-93.
    Iadecola, C. (2004). "Neurovascular regulation in the normal brain and in Alzheimer's disease." Nat Rev Neurosci 5(5): 347-60.
    Illi, B., A. Scopece, et al. (2005). "Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress." Circ Res 96(5): 501-8.
    Kalka, C., H. Masuda, et al. (2000). "Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects." Circ Res 86(12): 1198-202.
    Katayama, Y., T. Inaba, et al. (2016). "Neuroprotective effects of erythromycin on ischemic injury following permanent focal cerebral ischemia in rats." Neurol Res 38(3): 275-84.
    Kavanagh, D. P. and N. Kalia (2011). "Hematopoietic stem cell homing to injured tissues." Stem Cell Rev 7(3): 672-82.
    Koerner, I. P., M. Gatting, et al. (2007). "Induction of cerebral ischemic tolerance by erythromycin preconditioning reprograms the transcriptional response to ischemia and suppresses inflammation." Anesthesiology 106(3): 538-47.
    Krankel, N., G. Spinetti, et al. (2011). "Targeting stem cell niches and trafficking for cardiovascular therapy." Pharmacol Ther 129(1): 62-81.
    Lee, D., C. Park, et al. (2008). "ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification." Cell Stem Cell 2(5): 497-507.
    Lee, D. J., C. H. Ho, et al. (2003). "LPA-stimulated fibroblast contraction of floating collagen matrices does not require Rho kinase activity or retraction of fibroblast extensions." Exp Cell Res 289(1): 86-94.
    Lee, M. Y., Y. H. Kuan, et al. (2007). "Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats." J Pineal Res 42(3): 297-309.
    Lensch, M. W., T. M. Schlaeger, et al. (2007). "Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera." Cell Stem Cell 1(3): 253-8.
    Lingfang Zeng, Q. X., Andriana Margariti, Zhongyi Zhang, Anna Zampetaki, Seema Patel, Maurizio C. Capogrossi, Yanhua Hu, and Qingbo Xu (2006). "HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells." J Cell Biol 174: 1059-1069.
    Martinez-Estrada, O. M., Y. Munoz-Santos, et al. (2005). "Human adipose tissue as a source of Flk-1+ cells: new method of differentiation and expansion." Cardiovasc Res 65(2): 328-33.
    McGowan, S. L., H. F. Edelhauser, et al. (2007). "Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas." Mol Vis 13: 1984-2000.
    Melchionna, R., D. Porcelli, et al. (2005). "Laminar shear stress inhibits CXCR4 expression on endothelial cells: functional consequences for atherogenesis." FASEB J 19(6): 629-31.
    Mirabelli-Badenier, M., V. Braunersreuther, et al. (2011). "CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke." Thromb Haemost 105(3): 409-20.
    Nakagawa, S., M. A. Deli, et al. (2009). "A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes." Neurochem Int 54(3-4): 253-63.
    Nicoli, S., C. Standley, et al. "MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis." Nature 464(7292): 1196-200.
    Noels, H., B. Zhou, et al. (2014). "Deficiency of endothelial CXCR4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice." Arterioscler Thromb Vasc Biol 34(6): 1209-20.
    Oancea, E., J. T. Wolfe, et al. (2006). "Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow." Circ Res 98(2): 245-53.
    Osawa, M., M. Masuda, et al. (2002). "Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule?" J Cell Biol 158(4): 773-85.
    Perin, E. C. (2006). "Stem cell therapy for cardiovascular disease." Tex Heart Inst J 33(2): 204-8.
    Phinney, D. G. and D. J. Prockop (2007). "Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views." Stem Cells 25(11): 2896-902.
    Rafii, S. and D. Lyden (2003). "Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration." Nat Med 9(6): 702-12.
    Rathjen, J. and P. D. Rathjen (2001). "Mouse ES cells: experimental exploitation of pluripotent differentiation potential." Curr Opin Genet Dev 11(5): 587-94.
    Sainz, J. and M. Sata (2007). "CXCR4, a key modulator of vascular progenitor cells." Arterioscler Thromb Vasc Biol 27(2): 263-5.
    Shyy, J. Y. and S. Chien (2002). "Role of integrins in endothelial mechanosensing of shear stress." Circ Res 91(9): 769-75.
    Takagi, Y., N. Hashimoto, et al. (2009). "Erythromycin-induced CXCR4 expression on microvascular endothelial cells." Am J Physiol Lung Cell Mol Physiol 297(3): L420-31.
    Tarbell, J. M. and M. Y. Pahakis (2006). "Mechanotransduction and the glycocalyx." J Intern Med 259(4): 339-50.
    Tepper, O. M., R. D. Galiano, et al. (2002). "Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures." Circulation 106(22): 2781-6.
    Vasa, M., S. Fichtlscherer, et al. (2001). "Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease." Circulation 103(24): 2885-90.
    Vasa, M., S. Fichtlscherer, et al. (2001). "Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease." Circ Res 89(1): E1-7.
    Volin, M. V., L. Joseph, et al. (1998). "Chemokine receptor CXCR4 expression in endothelium." Biochem Biophys Res Commun 242(1): 46-53.
    Wang, H., G. M. Riha, et al. (2005). "Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line." Arterioscler Thromb Vasc Biol 25(9): 1817-23.
    Wu, C. C., Y. C. Chao, et al. (2008). "Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells." J Biomech 41(4): 813-21.
    Wu, C. C., Y. S. Li, et al. (2007). "Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry." Proc Natl Acad Sci U S A 104(4): 1254-9.
    Xu, Q. (2007). "The role of stem cells in vein graft remodelling." Biochem Soc Trans 35(Pt 5): 895-9.
    Yamamoto, K., T. Sokabe, et al. (2005). "Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro." Am J Physiol Heart Circ Physiol 288(4): H1915-24.
    Yamamoto, K., T. Takahashi, et al. (2003). "Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress." J Appl Physiol 95(5): 2081-8.
    Yu, J., S. Bergaya, et al. (2006). "Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels." J Clin Invest 116(5): 1284-91.
    Zheng, H., G. Fu, et al. (2007). "Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway." J Cardiovasc Pharmacol 50(3): 274-80.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE