簡易檢索 / 詳目顯示

研究生: 曾柏鈞
Tseng, Po-Chun
論文名稱: 以多巴胺促進牙本質膠原蛋白之穩定性
Stabilizing dentin collagen with dopamine treatment
指導教授: 莊淑芬
Chuang, Shu-Fen
共同指導教授: 謝達斌
Shieh, Dar-Bin
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 48
中文關鍵詞: 多巴胺兒茶酚牙本質膠原蛋白穩定性
外文關鍵詞: Dopamine, Catechol, Dentin, Collagen, Stabilization
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今牙科複合樹脂填補是藉由與牙本質膠原蛋白形成混合層產生鍵結,但內生性膠原蛋白酶會降解膠原蛋白、影響其生物穩定性,進而降低牙本質黏著的耐久性。已有研究證實多酚類化合物可穩定牙本質膠原蛋白基質並增加樹脂與牙本質粘合介面的機械性質。然而多酚類化合物結構的複雜性和天然植物提取物的批次間差異仍可能妨礙我們對其穩定作用機制的深入理解,也可能對進一步應用開發構成阻礙。因此,本研究目標研究多巴胺(具兒茶酚官能基之生物分子)促進牙本質膠原蛋白穩定性的潛力。
    實驗中,完全脫鈣的牙本質樣本以0.1至0.001 M的多巴胺處理10分鐘,而表面脫鈣的牙本質樣本則處理5分鐘以更接近臨床情況。樣本隨後以膠原蛋白酶降解,並用FTIR光譜,橫截面SEM影像和降解後乾重減少量研究多巴胺處理對生物穩定性的影響。另外亦採用光學同調斷層掃描技術對真空乾燥後全脫鈣牙本質片的二維收縮進行定量,並以FTIR光譜研究多巴胺在牙本質表面的吸附行為。
    結果部分,FTIR差異光譜證實多巴胺在牙本質上的緊密吸附,並顯現出多巴胺和牙本質基質之間的交互作用。在膠原蛋白酶降解後,10分鐘所有測試濃度之多巴胺處理組之降解量皆顯著減少。於表面脫鈣牙本質樣本處理5分鐘各組中,自FTIR光譜和SEM橫截面影像則會發現多巴胺在0.001 M濃度下最為有效。另外,全脫鈣牙本質樣本的二維收縮亦於0.001 M多巴胺處理組中有顯著降低。
    本實驗證明多巴胺在低濃度、臨床可接受的處理時間內即可顯著提升牙本質膠原蛋白抗降解能力,並讓我們對酚類化合物及牙本質膠原蛋白之間的相互作用機制有更多理解。研究中發現多巴胺濃度、牙本質尺度、處理時間和穩定作用之間的交互關係將為相關研究開闢新的方向。

    Contemporary dental composite restoration relies on the infiltration and hybridization with dentin collagen to establish the bonding to dentin. Due to the presence of endogenous collagenolytic enzymes, the inherent instability of dentin collagen poses a major threat to the durability of the bonding interface. Polyphenolic compounds have been proved to stabilize dentin collagen matrix and increase mechanical properties of resin-dentin bonding interface. However, the complexity of the structure of polyphenolic compounds and lot-to-lot variations of naturally-derived plant extracts remain an obstacle to a deeper understanding of the stabilization mechanism and development of further applications. Therefore, this study was aimed to investigate the dentin stabilization potential of dopamine, a phenolic biomolecule with catechol functional group.
    In the experiment, fully-demineralized dentin specimens were treated with 0.1 to 0.001 M dopamine for 10 minutes, while surface-demineralized specimens were treated for 5 minutes to better simulate the clinical situation. Subsequently, the biostability of dopamine-treated demineralized dentin specimens was investigated with FTIR spectroscopy, cross-sectional SEM images and degradative weight loss after challenged by collagenase; moreover, the two-dimensional shrinkage behavior of fully-demineralized dentin slab after vacuum-dried was characterized with optical coherence tomography, and the adsorption of dopamine and its interaction with dentin collagen matrix was investigated with FTIR spectroscopy.
    FTIR difference spectra demonstrated the interaction and tight adsorption of dopamine onto dentin collagen matrix. After challenged by collagenase, dopamine of all concentrations significantly reduced degradative weight loss by treatments for 10 minutes, while FTIR spectroscopy and cross-sectional SEM images suggested that 0.001 M dopamine treatment on surface-demineralized dentin specimens was most effective to maintain collagen structure. Similarly, the two-dimensional shrinkage significantly reduced only in 0.001 M dopamine treated group.
    The results demonstrated the anti-proteolytic effect of dopamine treatment on dentin collagen in clinically-relevant treatment time at a low concentration. This study provided mechanistic insights into the interaction between phenolic compounds and dentin collagen in regards of the interplay among concentration, scale, treatment time. The protective effect of dopamine treatment found in this study will open up new directions for the future studies.

    中文摘要 I Abstract III 致謝 V Content VI List of tables VIII List of figures IX Chapter 1 Introduction 1 1.1 Dentin bonding interface 1 1.1.1 Dentin as a bonding substrate 1 1.1.2 Structure of dentin bonding interface 1 1.2 Vulnerability of the bonding interface 2 1.2.1 Inherent instability of dentin collagen 2 1.2.2 Hydrolytic degradation of adhesive 4 1.3 Improving the bonding interface with crosslinking agents 4 1.4 Polyphenols as a candidate crosslinker 5 1.4.1 Effect of polyphenols in bonding interface 5 1.4.2 Chemistry of dopamine and applications in biomaterials 6 1.4.3 Possible mechanisms of collagen stabilization by dopamine 8 1.5 Motivation and objective 11 1.6 Hypothesis 11 Chapter 2 Materials and Methods 12 2.1 Molecular Docking Simulation 13 2.1.1 Preparation of collagen segment 13 2.1.2 Preparation of ligands 13 2.1.3 Docking analysis 14 2.2 Characterization of the dopamine system 14 2.3 Dimensional stability of dentin collagen matrix 16 2.4 FTIR spectroscopy analysis of dopamine-dentin interaction 17 2.5 FTIR spectroscopy analysis of collagen degradation 18 2.6 Cross-sectional SEM analysis 19 2.7 Weight loss after biodegradation 20 2.8 Statistics 20 Chapter 3 Results 21 3.1 Docking Simulation 21 3.2 Dimensional stability of dentin collagen matrix 22 3.3 FTIR spectroscopy for dopamine-dentin interaction 23 3.4 FTIR spectroscopy after degradation 27 3.5 Cross-sectional SEM analysis 29 3.6 Weight loss after biodegradation 30 Chapter 4 Discussion 32 Chapter 5 Conclusion 39 References 40

    [1] J.L. Ferracane, Resin composite--state of the art, Dent Mater 27(1) (2011) 29-38.
    [2] P. Spencer, Q. Ye, J. Park, E.M. Topp, A. Misra, O. Marangos, Y. Wang, B.S. Bohaty, V. Singh, F. Sene, J. Eslick, K. Camarda, J.L. Katz, Adhesive/Dentin interface: the weak link in the composite restoration, Ann Biomed Eng 38(6) (2010) 1989-2003.
    [3] A. Nanci, A.R. TenCate, Dentin-pulp complex, Ten Cate's oral histology: development, structure, and function, St. Louis, Missouri, 2018.
    [4] M. Goldberg, A.B. Kulkarni, M. Young, A. Boskey, Dentin: structure, composition and mineralization, Front Biosci (Elite Ed) 3 (2011) 711-35.
    [5] J.P. Orgel, A. Miller, T.C. Irving, R.F. Fischetti, A.P. Hammersley, T.J. Wess, The in situ supermolecular structure of type I collagen, Structure 9(11) (2001) 1061-9.
    [6] L.E. Bertassoni, Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering, Dent Mater 33(6) (2017) 637-649.
    [7] A. Mazzoni, V. Angeloni, A. Comba, T. Maravic, M. Cadenaro, A. Tezvergil-Mutluay, D.H. Pashley, F.R. Tay, L. Breschi, Cross-linking effect on dentin bond strength and MMPs activity, Dent Mater 34(2) (2018) 288-295.
    [8] L. Breschi, A. Mazzoni, A. Ruggeri, M. Cadenaro, R. Di Lenarda, E. De Stefano Dorigo, Dental adhesion review: aging and stability of the bonded interface, Dent Mater 24(1) (2008) 90-101.
    [9] Y. Nishitani, M. Yoshiyama, A.M. Donnelly, K.A. Agee, J. Sword, F.R. Tay, D.H. Pashley, Effects of resin hydrophilicity on dentin bond strength, J Dent Res 85(11) (2006) 1016-21.
    [10] L. Tjaderhane, F.D. Nascimento, L. Breschi, A. Mazzoni, I.L. Tersariol, S. Geraldeli, A. Tezvergil-Mutluay, M. Carrilho, R.M. Carvalho, F.R. Tay, D.H. Pashley, Strategies to prevent hydrolytic degradation of the hybrid layer-A review, Dent Mater 29(10) (2013) 999-1011.
    [11] A. Mazzoni, L. Tjaderhane, V. Checchi, R. Di Lenarda, T. Salo, F.R. Tay, D.H. Pashley, L. Breschi, Role of dentin MMPs in caries progression and bond stability, J Dent Res 94(2) (2015) 241-51.
    [12] S.F.D. Amaral, P.M.C. Scaffa, R.D.S. Rodrigues, D. Nesadal, M.M. Marques, F.N. Nogueira, M.A.P. Sobral, Dynamic Influence of pH on Metalloproteinase Activity in Human Coronal and Radicular Dentin, Caries Res 52(1-2) (2018) 113-118.
    [13] M. Hashimoto, F.R. Tay, H. Ohno, H. Sano, M. Kaga, C. Yiu, H. Kumagai, Y. Kudou, M. Kubota, H. Oguchi, SEM and TEM analysis of water degradation of human dentinal collagen, J Biomed Mater Res B Appl Biomater 66(1) (2003) 287-98.
    [14] Y. Nishitani, M. Yoshiyama, B. Wadgaonkar, L. Breschi, F. Mannello, A. Mazzoni, R.M. Carvalho, L. Tjaderhane, F.R. Tay, D.H. Pashley, Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives, Eur J Oral Sci 114(2) (2006) 160-6.
    [15] F.R. Tay, D.H. Pashley, R.J. Loushine, R.N. Weller, F. Monticelli, R. Osorio, Self-etching adhesives increase collagenolytic activity in radicular dentin, J Endod 32(9) (2006) 862-8.
    [16] J. Zhou, J. Tan, X. Yang, X. Xu, D. Li, L. Chen, MMP-inhibitory effect of chlorhexidine applied in a self-etching adhesive, J Adhes Dent 13(2) (2011) 111-5.
    [17] V. Hass, I.V. Luque-Martinez, M.F. Gutierrez, C.G. Moreira, V.B. Gotti, V.P. Feitosa, G. Koller, M.F. Otuki, A.D. Loguercio, A. Reis, Collagen cross-linkers on dentin bonding: Stability of the adhesive interfaces, degree of conversion of the adhesive, cytotoxicity and in situ MMP inhibition, Dent Mater 32(6) (2016) 732-41.
    [18] Y. Liu, L. Tjaderhane, L. Breschi, A. Mazzoni, N. Li, J. Mao, D.H. Pashley, F.R. Tay, Limitations in bonding to dentin and experimental strategies to prevent bond degradation, J Dent Res 90(8) (2011) 953-68.
    [19] F. Song, K. Wisithphrom, J. Zhou, L.J. Windsor, Matrix metalloproteinase dependent and independent collagen degradation, Front Biosci 11(1) (2006) 3100-20.
    [20] F.T. Sadek, D.H. Pashley, Y. Nishitani, M.R. Carrilho, A. Donnelly, M. Ferrari, F.R. Tay, Application of hydrophobic resin adhesives to acid-etched dentin with an alternative wet bonding technique, J Biomed Mater Res A 84(1) (2008) 19-29.
    [21] S. Talungchit, J.L. Jessop, D.S. Cobb, F. Qian, S. Geraldeli, D.H. Pashley, S.R. Armstrong, Ethanol-wet bonding and chlorhexidine improve resin-dentin bond durability: quantitative analysis using raman spectroscopy, J Adhes Dent 16(5) (2014) 441-50.
    [22] E. Kuhn, P. Farhat, A.P. Teitelbaum, A. Mena-Serrano, A.D. Loguercio, A. Reis, D.H. Pashley, Ethanol-wet bonding technique: Clinical versus laboratory findings, Dent Mater 31(9) (2015) 1030-7.
    [23] A.K. Bedran-Russo, D.H. Pashley, K. Agee, J.L. Drummond, K.J. Miescke, Changes in stiffness of demineralized dentin following application of collagen crosslinkers, J Biomed Mater Res B Appl Biomater 86(2) (2008) 330-4.
    [24] P.H. dos Santos, S. Karol, A.K. Bedran-Russo, Nanomechanical properties of biochemically modified dentin bonded interfaces, J Oral Rehabil 38(7) (2011) 541-6.
    [25] C. Xu, Y. Wang, Collagen cross linking increases its biodegradation resistance in wet dentin bonding, J Adhes Dent 14(1) (2012) 11-8.
    [26] H. Ryou, G. Turco, L. Breschi, F.R. Tay, D.H. Pashley, D. Arola, On the stiffness of demineralized dentin matrices, Dent Mater 32(2) (2016) 161-70.
    [27] A.K. Bedran-Russo, C.M. Vidal, P.H. Dos Santos, C.S. Castellan, Long-term effect of carbodiimide on dentin matrix and resin-dentin bonds, J Biomed Mater Res B Appl Biomater 94(1) (2010) 250-5.
    [28] D.L. Scheffel, J. Hebling, R.H. Scheffel, K.A. Agee, M. Cadenaro, G. Turco, L. Breschi, A. Mazzoni, C.A. Costa, D.H. Pashley, Stabilization of dentin matrix after cross-linking treatments, in vitro, Dent Mater 30(2) (2014) 227-33.
    [29] J. Cai, J.E.A. Palamara, M.F. Burrow, Effects of Collagen Crosslinkers on Dentine: A Literature Review, Calcif Tissue Int 102(3) (2018) 265-279.
    [30] E. Onem, A. Yorgancioglu, H.A. Karavana, O. Yilmaz, Comparison of different tanning agents on the stabilization of collagen via differential scanning calorimetry, Journal of Thermal Analysis and Calorimetry 129(1) (2017) 615-622.
    [31] B. Madhan, V. Subramanian, J.R. Rao, B.U. Nair, T. Ramasami, Stabilization of collagen using plant polyphenol: role of catechin, Int J Biol Macromol 37(1-2) (2005) 47-53.
    [32] C.M. Vidal, A.A. Leme, T.R. Aguiar, R. Phansalkar, J.W. Nam, J. Bisson, J.B. McAlpine, S.N. Chen, G.F. Pauli, A. Bedran-Russo, Mimicking the hierarchical functions of dentin collagen cross-links with plant derived phenols and phenolic acids, Langmuir 30(49) (2014) 14887-93.
    [33] A.K. Bedran-Russo, K.J. Yoo, K.C. Ema, D.H. Pashley, Mechanical properties of tannic-acid-treated dentin matrix, J Dent Res 88(9) (2009) 807-11.
    [34] K. Li, H.Y. Yang, H.Y. Yan, Y.H. Sun, X.H. Chen, J.M. Guo, J.X. Yue, C. Huang, Quercetin as a simple but versatile primer in dentin bonding, Rsc Advances 7(58) (2017) 36392-36402.
    [35] C.S. Castellan, P.N. Pereira, R.H. Grande, A.K. Bedran-Russo, Mechanical characterization of proanthocyanidin-dentin matrix interaction, Dent Mater 26(10) (2010) 968-73.
    [36] C.S. Castellan, A.K. Bedran-Russo, S. Karol, P.N. Pereira, Long-term stability of dentin matrix following treatment with various natural collagen cross-linkers, J Mech Behav Biomed Mater 4(7) (2011) 1343-50.
    [37] A.A. Leme-Kraus, B. Aydin, C.M. Vidal, R.M. Phansalkar, J.W. Nam, J. McAlpine, G.F. Pauli, S. Chen, A.K. Bedran-Russo, Biostability of the Proanthocyanidins-Dentin Complex and Adhesion Studies, J Dent Res 96(4) (2017) 406-412.
    [38] L.C. de Souza, N.S. Rodrigues, D.A. Cunha, V.P. Feitosa, S.L. Santiago, A. Reis, A.D. Loguercio, T.P. Matos, V.P.A. Saboia, J. Perdigao, Two-year clinical evaluation of proanthocyanidins added to a two-step etch-and-rinse adhesive, J Dent 81 (2019) 7-16.
    [39] Y. Liu, V. Dusevich, Y. Wang, Addition of Grape Seed Extract Renders Phosphoric Acid a Collagen-stabilizing Etchant, J Dent Res 93(8) (2014) 821-7.
    [40] V. Hass, I. Luque-Martinez, M.A. Munoz, M.F. Reyes, G. Abuna, M.A. Sinhoreti, A.Y. Liu, A.D. Loguercio, Y. Wang, A. Reis, The effect of proanthocyanidin-containing 10% phosphoric acid on bonding properties and MMP inhibition, Dent Mater 32(3) (2016) 468-75.
    [41] A.D. Loguercio, P. Malaquias, F.P. Dos Santos, V. Hass, R. Stanislawczuk, S.N.L. Lima, M.C. Bandeca, A. Reis, Acid Etching with Modified Phosphoric Acid to Increase the Longevity of the Bonded Interface, J Adhes Dent 19(3) (2017) 195-201.
    [42] J.H. Waite, M.L. Tanzer, Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline, Science 212(4498) (1981) 1038-40.
    [43] H. Lee, N.F. Scherer, P.B. Messersmith, Single-molecule mechanics of mussel adhesion, Proc Natl Acad Sci U S A 103(35) (2006) 12999-3003.
    [44] S. Hong, Y. Wang, S.Y. Park, H. Lee, Progressive fuzzy cation-pi assembly of biological catecholamines, Sci Adv 4(9) (2018) eaat7457.
    [45] Y. Li, M. Qin, Y. Li, Y. Cao, W. Wang, Single molecule evidence for the adaptive binding of DOPA to different wet surfaces, Langmuir 30(15) (2014) 4358-66.
    [46] Y.X. Li, J. Li, E. Shangguan, Q.M. Li, The effect of acidity, hydrogen bond catalysis and auxiliary electrode reaction on the oxidation peak current for dopamine, uric acid and tryptophan, Analytical Methods 7(6) (2015) 2636-2644.
    [47] T. Utzig, P. Stock, M. Valtiner, Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale, Angew Chem Int Ed Engl 55(33) (2016) 9524-8.
    [48] B. Liu, L. Burdine, T. Kodadek, Chemistry of periodate-mediated cross-linking of 3,4-dihydroxylphenylalanine-containing molecules to proteins, J Am Chem Soc 128(47) (2006) 15228-35.
    [49] J. Yang, V. Saggiomo, A.H. Velders, M.A. Cohen Stuart, M. Kamperman, Reaction Pathways in Catechol/Primary Amine Mixtures: A Window on Crosslinking Chemistry, PLoS One 11(12) (2016) e0166490.
    [50] N.R. Martinez Rodriguez, S. Das, Y. Kaufman, W. Wei, J.N. Israelachvili, J.H. Waite, Mussel adhesive protein provides cohesive matrix for collagen type-1alpha, Biomaterials 51 (2015) 51-57.
    [51] R. Usha, A. Rajaram, T. Ramasami, Stability of collagen in the presence of 3,4-dihydroxyphenylalanine (DOPA), J Photochem Photobiol B 97(1) (2009) 34-9.
    [52] S.C. Zhu, Z.P. Gu, S.B. Xiong, Y.Q. An, Y.M. Liu, T. Yin, J. You, Y. Hu, Fabrication of a novel bio-inspired collagen-polydopamine hydrogel and insights into the formation mechanism for biomedical applications, Rsc Advances 6(70) (2016) 66180-66190.
    [53] D. Minond, J.L. Lauer-Fields, M. Cudic, C.M. Overall, D. Pei, K. Brew, R. Visse, H. Nagase, G.B. Fields, The roles of substrate thermal stability and P2 and P1' subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity, J Biol Chem 281(50) (2006) 38302-13.
    [54] C.C. Huang, G.S. Couch, E.F. Pettersen, T.E. Ferrin, A.E. Howard, T.E. Klein, The object technology framework: an object-oriented interface to molecular data and its application to collagen, Pac Symp Biocomput (1998) 349-61.
    [55] T.J. Dolinsky, J.E. Nielsen, J.A. McCammon, N.A. Baker, PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Res 32(Web Server issue) (2004) W665-7.
    [56] A.E. Aliev, M. Kulke, H.S. Khaneja, V. Chudasama, T.D. Sheppard, R.M. Lanigan, Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics, Proteins 82(2) (2014) 195-215.
    [57] T. Sterling, J.J. Irwin, ZINC 15--Ligand Discovery for Everyone, J Chem Inf Model 55(11) (2015) 2324-37.
    [58] O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem 31(2) (2010) 455-61.
    [59] R.A. Laskowski, M.B. Swindells, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery, J Chem Inf Model 51(10) (2011) 2778-86.
    [60] X. Jin, Y.L. Hsieh, pH-responsive swelling behavior of poly(vinyl alcohol)/poly(acrylic acid) bi-component fibrous hydrogel membranes, Polymer 46(14) (2005) 5149-5160.
    [61] A. Kishen, S. Shrestha, A. Shrestha, C. Cheng, C. Goh, Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation, Dent Mater 32(8) (2016) 968-77.
    [62] Y. Liu, X. Yao, Y.W. Liu, Y. Wang, A Fourier transform infrared spectroscopy analysis of carious dentin from transparent zone to normal zone, Caries Res 48(4) (2014) 320-9.
    [63] A. Shrestha, M.R. Hamblin, A. Kishen, Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin, Antimicrob Agents Chemother 56(9) (2012) 4876-84.
    [64] D.B. Gorle, M.A. Kulandainathan, Electrochemical sensing of dopamine at the surface of a dopamine grafted graphene oxide/poly(methylene blue) composite modified electrode, Rsc Advances 6(24) (2016) 19982-19991.
    [65] X.H. Guan, C. Shang, G.H. Chen, ATR-FTIR investigation of the role of phenolic groups in the interaction of some NOM model compounds with aluminum hydroxide, Chemosphere 65(11) (2006) 2074-81.
    [66] J. Arana, E. Pulido Melian, V.M. Rodriguez Lopez, A. Pena Alonso, J.M. Dona Rodriguez, O. Gonzalez Diaz, J. Perez Pena, Photocatalytic degradation of phenol and phenolic compounds Part I. Adsorption and FTIR study, J Hazard Mater 146(3) (2007) 520-8.
    [67] R.A. Zangmeister, T.A. Morris, M.J. Tarlov, Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine, Langmuir 29(27) (2013) 8619-28.
    [68] N.F. Della Vecchia, A. Luchini, A. Napolitano, G. D'Errico, G. Vitiello, N. Szekely, M. d'Ischia, L. Paduano, Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties, Langmuir 30(32) (2014) 9811-8.
    [69] Y. Huang, Y. Li, Z. Hu, X. Yue, M.T. Proetto, Y. Jones, N.C. Gianneschi, Mimicking Melanosomes: Polydopamine Nanoparticles as Artificial Microparasols, ACS Cent Sci 3(6) (2017) 564-569.
    [70] S. Gunasekaran, R.T. Kumar, S. Ponnusamy, Vibrational spectra and normal coordinate analysis of adrenaline and dopamine, Indian Journal of Pure & Applied Physics 45(11) (2007) 884-892.
    [71] J. Coates, Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry2000, pp. 10815-10837.
    [72] Y.C. Lee, C.C. Chiang, P.Y. Huang, C.Y. Chung, T.D. Huang, C.C. Wang, C.I. Chen, R.S. Chang, C.H. Liao, R.R. Reisz, Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy, Nat Commun 8(1) (2017) 14220.
    [73] A. Thakur, S. Ranote, D. Kumar, K.K. Bhardwaj, R. Gupta, G.S. Chauhan, Synthesis of a PEGylated Dopamine Ester with Enhanced Antibacterial and Antifungal Activity, ACS Omega 3(7) (2018) 7925-7933.
    [74] W. Wei, L. Petrone, Y. Tan, H. Cai, J.N. Israelachvili, A. Miserez, J.H. Waite, An Underwater Surface-Drying Peptide Inspired by a Mussel Adhesive Protein, Adv Funct Mater 26(20) (2016) 3496-3507.
    [75] P. Hellwig, Infrared spectroscopic markers of quinones in proteins from the respiratory chain, Biochim Biophys Acta 1847(1) (2015) 126-33.
    [76] C.D.A. Lopes, P.H.J.O. Limirio, V.R. Novais, P. Dechichi, Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone, Applied Spectroscopy Reviews 53(9) (2018) 747-769.
    [77] P. Velmurugan, E.R. Singam, R.R. Jonnalagadda, V. Subramanian, Investigation on interaction of tannic acid with type I collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications, Biopolymers 101(5) (2014) 471-83.
    [78] G. Carta, A.J. Knox, D.G. Lloyd, Unbiasing scoring functions: a new normalization and rescoring strategy, J Chem Inf Model 47(4) (2007) 1564-71.
    [79] D. Jean-Gilles, L. Li, V.G. Vaidyanathan, R. King, B. Cho, D.R. Worthen, C.O. Chichester, 3rd, N.P. Seeram, Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo, Chem Biol Interact 205(2) (2013) 90-9.
    [80] I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, Y. Sumi, Estimation of the enamel and dentin mineral content from the refractive index, Caries Res 47(1) (2013) 18-26.
    [81] P.T. Inc, MIRacle Single Reflection Horizontal ATR Accessory - Installation and User Guide, Madison, 2018.
    [82] U. Eckhard, E. Schonauer, D. Nuss, H. Brandstetter, Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis, Nat Struct Mol Biol 18(10) (2011) 1109-14.
    [83] Y.Z. Zhang, L.Y. Ran, C.Y. Li, X.L. Chen, Diversity, Structures, and Collagen-Degrading Mechanisms of Bacterial Collagenolytic Proteases, Appl Environ Microbiol 81(18) (2015) 6098-107.
    [84] D. Kumar, S.P. Gupta, A quantitative structure-activity relationship study on some matrix metalloproteinase and collagenase inhibitors, Bioorganic & Medicinal Chemistry 11(3) (2003) 421-426.
    [85] S.R. Armstrong, J.L. Jessop, M.A. Vargas, Y. Zou, F. Qian, J.A. Campbell, D.H. Pashley, Effects of exogenous collagenase and cholesterol esterase on the durability of the resin-dentin bond, J Adhes Dent 8(3) (2006) 151-60.
    [86] M. Toledano, R. Osorio, E. Osorio, F.S. Aguilera, M. Yamauti, D.H. Pashley, F. Tay, Effect of bacterial collagenase on resin-dentin bonds degradation, J Mater Sci Mater Med 18(12) (2007) 2355-61.
    [87] B. Green, X. Yao, A. Ganguly, C. Xu, V. Dusevich, M.P. Walker, Y. Wang, Grape seed proanthocyanidins increase collagen biodegradation resistance in the dentin/adhesive interface when included in an adhesive, J Dent 38(11) (2010) 908-15.
    [88] C. Xu, Y. Wang, Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase, J Biomed Mater Res B Appl Biomater 96(2) (2011) 242-8.
    [89] Y. Liu, M. Chen, X. Yao, C. Xu, Y. Zhang, Y. Wang, Enhancement in dentin collagen's biological stability after proanthocyanidins treatment in clinically relevant time periods, Dent Mater 29(4) (2013) 485-92.
    [90] Y. Liu, Y. Wang, Proanthocyanidins' efficacy in stabilizing dentin collagen against enzymatic degradation: MALDI-TOF and FTIR analyses, J Dent 41(6) (2013) 535-42.
    [91] A.S. Fawzy, B.M. Priyadarshini, S.T. Selvan, T.B. Lu, J. Neo, Proanthocyanidins-Loaded Nanoparticles Enhance Dentin Degradation Resistance, J Dent Res 96(7) (2017) 780-789.
    [92] M. Ekambaram, C.K. Yiu, J.P. Matinlinna, Effect of Solvents on Dentin Collagen Cross-linking Potential of Carbodiimide, J Adhes Dent 17(3) (2015) 219-26.
    [93] J. Zhou, A. Chiba, D.L. Scheffel, J. Hebling, K. Agee, J. Tagami, J. Tan, D. Abuelenain, M.A. Nawareg, A.H. Hassan, L. Breschi, F.R. Tay, D.H. Pashley, Cross-linked dry bonding: A new etch-and-rinse technique, Dent Mater 32(9) (2016) 1124-32.
    [94] D.R. Amin, C. Sugnaux, K.H.A. Lau, P.B. Messersmith, Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging, Biomimetics (Basel) 2(3) (2017) 17.

    無法下載圖示 校內:2024-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE