| 研究生: |
余曉萍 Yu, Shiau-Ping |
|---|---|
| 論文名稱: |
逐次抽樣計畫最佳停止法則之研究 Development of Optimal Stopping Rules for Sequential Sampling Plan |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 逐次抽樣檢驗計畫 、型Ι及型Ⅱ誤差 、總成本函數 、最佳停止法則 |
| 外文關鍵詞: | sequential sampling plan, optimal stopping rules, type Ι and Ⅱ errors, total cost function |
| 相關次數: | 點閱:261 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業界在進料或產品量產出貨時,由於受到時間與成本的限制,必須藉由抽樣檢驗隨機選取樣本進行檢驗測試,然後根據檢測結果作出該批量是否達到允收或拒收之判斷,特別是破壞性檢測常須付出一些額外的成本包含決策錯誤造成的損失及樣本檢測所花費的人工及物料成本。
適合破壞性檢測的Wald’s逐次抽樣檢驗計畫,其抽樣數為一隨機變數且抽樣計畫停止法則的選定常依經驗法則而定,因此實務工作者常無法得知停止抽樣之個數是否最經濟。為了有效降低逐次抽樣檢驗計畫平均抽樣數,本研究先設定抽樣數的上限,接著在此抽樣數上限之下決定允收或拒收之最佳停止法則。我們利用經濟成本之觀點,建構總成本函數,作為衡量逐次抽樣檢驗計畫的總損失成本。
研究結果顯示在合理的型Ι誤差及型Ⅱ誤差下,本研究所提出的抽樣計畫停止法則可有效降低平均抽樣數使抽樣總成本達到最低。
During the in-coming and/or outgoing inspection of the industrial products, the decision of accepting or rejecting a lot is made according to the inspection/testing results for the key characteristics of sample units. Additional costs including labor and material costs as well as the loss of mis-judgement usually occur when applying Wald's sequential sampling plan to the destructive testing.
Normally, previous stopping rules for Wald's sequential sampling plan are empirically determined based on rules of thumb. Practical and unable to decide whether the sample number for terminating inspection/testing is economical or not .
In order to effectively reduce the average sample number of sequential sampling plan, the upper limit of the sample number is specified first, then the optimal stopping rules is determined based on this specified sample number . Finally, a total cost function is established to assess the total loss of the proposed sequential sampling plan .
The results show that the optimal stopping rule for our proposed sequential sampling plan can effectively reduce the average sample number and thus achieve a minimum total loss under the reasonable type Ι and Ⅱ errors.
參考文獻
【1】Al-Sultan, K. S. and Rahim, M. A., Optimization in Quality Control, Kluwer Academic, Boston (1997).
【2】Aroian, L. A.,“Sequential Analysis, Direct Method,” Technometrics, 10(1), 125-132 (1968).
【3】Aroian, L. A.,“Application of the Direct Method in Sequential Analysis,” Technometrics, 18(3), 301-306 (1976).
【4】Burr, I. W., Statistical Quality Control Methods, M. Dekker, New York (1976).
【5】DeGroot, M. H., Optimal Statistical Decisions, McGraw-Hill, New York (1970).
【6】 Ghosh, B. K., Sequential Tests of Statistical Hypotheses, Addison-Wesley Pub. Co., Reading, Mass (1970).
【7】 Govindarajulu, Z., The Sequential Statistical Analysis of Hypothesis Testing, Point and Interval Estimation, and Decision Theory, American Sciences Press, Columbus, Ohio (1987).
【8】Lehmann, E. L., Testing Statistical Hypotheses, 2nd Ed., Wiley, New York (1986).
【9】McWilliams, T. P.,“Operating Characteristic and Average Sample Number Functions for Attribute-Based Sequential Test Plans,” J. Qual. Technol., 21(2), 128-135 (1989).
【10】McWilliams, T. P.,“The Design of Truncated Sequential Test Plans Based on Attributes Data,” Communcayions in Statistias, 33(3), 843-859 (2004).
【11】Reynolds, M. R. and Stoumbos, Z. G., “The SPRT Chart for Monitoring a Proportion, ” IIE Trans., 30(6), 545-561 (1998).
【12】Sarkadi, K. and Vincze, I., Mathematical Methods of Statistical Quality Control, Academic Press, New York (1974).
【13】Tantaratana, S. and Thomas, J. B., “Truncated Sequential Probability Ratio Test,” Information Sciences, 13, 283-300 (1977).
【14】Tantaratana, S. and Thomas, J. B., “Relative Efficiency of the Sequential Probability Ratio Test in Signal Detection,” IEEE Transactions on Information Theory, 24, 23-31 (1978).
【15】Tantaratana, S. and Poor, H. V.,“Asymptotic Efficiencies of Truncated Sequential Tests,” IEEE Transactions on Information Theory, 28(6), 911-923 (1982).
【16】Wald, A.,“Sequential Tests of Statistical Hypotheses,” The Annals of Mathematical Statistics, 16(2), 117-186 (1945).
【17】Wald, A. and Wofowitz, J.,“Optimum Character of the Sequential Probability Ratio Test,” Ann. Math. Statist., 19(3), 326-339 (1948).
【18】Wald, A., Sequential Analysis, John Wiley & Sons, New York (1947).
【19】Wald, A., Statistical Decision Functions, John Wiley & Sons, Inc., New York (1950).
【20】Wald, A., Sequential Analysis, John Wiley & Sons, New York (1973).
【21】張有成, 抽樣檢驗, 中華民國品質管制學會 (1991)。
【22】張有成, “MIL-STD-1916與MIL-STD-105E應用之比較,” 品質月刊, 5月號, 86-90 (2005).
【23】潘浙楠?李文瑞, 品質管理, 俊傑書局股份有限公司 (2003)。
【24】潘浙楠?周芳儀, “模糊歸屬函數在修正計數值抽樣檢驗計畫之應用,” 品質學報, 12(2), 89-100 (2005).
【25】盤天培?鄭鴻業等, “MIL-STD-105E?414與1916抽樣計畫之運用,” 品質月刊, 11月號, 74-81頁 (2005)。
【26】鄭春生, 品質管理, 三民書局股份有限公司 (1995)。