| 研究生: |
莊祥佑 Chuang, Shiang-You |
|---|---|
| 論文名稱: |
以圖形著色理論探討路網車輛偵測器佈設問題 Investigation of the network sensor location problem using graphical coloring theory |
| 指導教授: |
胡守任
Hu, Shou-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 車輛偵測器 、路網偵測器佈設問題 、流量守恆 、圖形著色理論 |
| 外文關鍵詞: | vehicle detector, network sensor location problems, rule of flow conservation, graphical coloring approach |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以流量守恆為基礎,探討路網中車輛偵測器佈設策略問題。近年來車輛偵測器佈設策略被廣泛的研究與討論,目的是透過佈設偵測器之部分路段流量,推估路網未佈設偵測器的路段流量,甚至進一步推算路徑流量與旅次起訖點的流量,這些推估的流量資料,對於短期交通管理及長期運輸規劃工作,具有重要的參考價值。
在探討路網車輛偵測器佈設問題的方法論方面,從最簡單的線性方程式到線性代數之方法皆有論及;但數學方程式有其限制所在,例如初始點的限制與大型路網運算費時等問題。為改善上述問題,本研究運用不同於數學代數模式的「圖形理論」,據以求解交通路網中車輛偵測器的最佳佈設策略。
圖形理論為非數學的邏輯推算法,在交通運輸上的應用常見於求解最短路徑、排程與排班等問題,具有快速求解與簡潔易懂的理念。本研究以圖形理論其中的一個方法:圖形著色理論,應用於求解交通路網的車輛偵測器最佳佈設策略問題,研究目的除了驗證圖形理論應用於該議題的可行性之外,同時評估不同求解方法在各類型路網上的求解效率。
最後,本研究透過不同路網模式之驗證及複雜度比較,評估圖形著色理論在路網偵測器佈設策略問題的適用性與優勢。
Vehicle detector is fundamental to traffic managers, which provides speed and flow data for traffic control and management. Due to a budgetary constraint of transportation agencies vehicle detector installation problem in a traffic network becomes increasingly important.
This research discusses with the Network Sensor Location Problem (NSLP) based on rule of flow conservation. We present a graphical coloring approach to determine the smallest subset of detectors which should be installed in a traffic network. All link flows in a target network can be inferred from the flows collected by these installed detectors.
We point out the coloring approach for NSLPs in this study, which shows that it is possible to select links for detector installation in a much easier and more flexible manner for practical applications.
The research compares the proposed coloring approach and the literatures’ approaches through time and space complexity; it proves that the performance of coloring approach is more effective than algebra-based approaches. At last, this research concludes the advantages and disadvantages for the literatures’ methods and the coloring approach.
中文文獻
1. 吳正宇,2003,點著色課程排程問題之研究--以淡江大學研究所為例,淡江大學運輸管理學系碩士論文。
2. 林豐博,曾平毅,林國顯,蘇振維,張瓊文,鄭嘉盈,呂怡青,劉國慶,陳昭堯,王怡方,2011,年臺灣地區公路容量手冊,交通部運輸研究所。
3. 林志棟,黃偉慶,張德文,劉明樓,1996,台灣地區柔性路面厚度設計手冊研擬,交通部國道新建工程局。
4. 黃文正,2009,力學經驗鋪面設計法應用於台灣瀝青混凝土鋪面,成功大學土木工程學系碩士論文。
英文文獻
1. Agnarssion, G., Greenlaw, R. (2007), Graph theory: Modeling, applications, and algorithms, United of America: Pearson Prentice Hall.
2. Alexanderson, G.L. (2006), “About the cover: Euler and K¨onigsberg’s bridges: A historical view”, Bulletin (new series) of the American mathematical society. 43, pp.567-573.
3. Bondy, J.A. (2008), Graph theory, New York: Springer.
4. Brooks, R.L. (1941), “On colouring the nodes of a network”, Mathematical Proceedings of the Cambridge Philosophical Society. 37, pp.194-197.
5. Castillo, E., Conejo, A. J., Pruneda, R. E., Solares, C. (2007). “Observability in linear systems of equations and inequalities: applications”, Computer and Operations Research. 34(6), pp.1708-1720.
6. Castillo, E., Conejo, A. J., Menendez, J. M., Jimenez, P. (2008a). “The observability problem in traffic network models”, Computer-Aided Civil and Infrastructure Engineering. 23(3), pp.208-222.
7. Castillo, E., Jimenez, P., Menendez, J. M., Conejo, A. J. (2008b). “The observability problem in traffic models: algebraic and topological methods”, IEEE Transactions on Intelligent Transportation Systems. 9(2), pp.275-287.
8. Castillo, E., Menéndez, J.M., Sánchez-Cambronero, S. (2008c). “Predicting traffic flow using Bayesian networks”, Transportation Research Part B: Methodological. 42(5), pp.482–509.
9. Castillo, E., Menéndez, J.M., Jiménez, P. (2008d). “Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations”, Transportation Research Part B: Methodological. 42(5), pp.455–481.
10. Castillo, E., Menéndez, J.M., Sanchez-Cambronero, S. (2008e). “Traffic estimation and optimal counting location with path enumeration using Bayesian networks”, Computer-Aided Civil and Infrastructure Engineering. 23(3), pp.189–207.
11. Castillo, E., Gallego, I., Sa´nchez-Cambronero, S., Rivas, A. (2010). “Matrix tools for general observability analysis in traffic networks”, IEEE Transactions on Intelligent Transportation Systems. 11(4), pp.799–813.
12. Chartrand, G. and Oellermann, O.R. (1993). Applied and Algorithmic Graph theory, United of America: McGraw-Hill College.
13. Chen, B.L. and Lih, K.W. (1994). “Equitable coloring of trees”, Journal of Combinatorial Theory Series B. 61, pp.83-87.
14. Ehlert, A., Bell, M.G.H., Grosso, S. (2006). “The optimisation of traffic count locations in road networks”, Transportation Research Part B: Methodological. 40, pp.460–479.
15. Fournier, J.C (2009). Graph theory and Applications: with exercises and problems, Great Britain and the United States: ISTE Ltd and John Wiley & Sons, Inc.
16. Garey, M.R., Johnson, D.S., Stockmeyer, L. (1976). “Some simplified NP-complete graph problems”, Theoretical Computer Science. 1, pp.237-267。
17. Gan, L., Yang, H., Wong, S.C. (2005). “Traffic counting location and error bound in origin-destination matrix estimation problems”, Journal of Transportation Engineering. 131, pp.524–534
18. Gentili, M., Mirchandani, P.B. (2005). “Locating active sensors on traffic networks”. Annals of Operations Research. 136(1), pp.229–257.
19. Gentili, M. and Mirchandani, P.B. (2012). “Locating sensors on traffic networks: Models, challenges and research opportunities”, Transportation Research Part C: Emerging Technologies. 24, pp.227-255.
20. Golumbic, M.C and Hartman, I. B. A. (2005). Graph theory, combinatorics and algorithms : Interdisciplinary applications, New York: Springer.
21. Harju, T. (2011). Lecture notes on graph theory. Finland: Department of Mathematics University of Turku.
22. He, S.X. (2013). “A graphical approach to identify sensor locations for link flow inference”, Transportation Research Part B: Methodological. 51, pp.65-76.
23. Hu, S. R., Peeta, S., Chu, C. H. (2009). “Identification of vehicle sensor locations for link-based network traffic applications”, Transportation Research Part B: Methodological. 43, pp.873-894.
24. Lih, K.W and Wu, P.L. (1996). “On equitable coloring of bipartite graphs”, Discrete Mathematics. 151, pp.155-160.
25. Ng, M. (2012). “Synergistic sensor location for link flow inference without path enumeration: A node-based approach”, Transportation Research Part B: Methodological. 46, pp.781-788.
26. Robin, J. W. (1979). Introduction to graph theory, and profits (2nd ed.), New York: ACADEMIC PRESS.
27. Transportation Research Board, National Research Council (2010). HCM 2010 : Highway Capacity Manual. Washington, D.C., Transportation Research Board,
28. Yang, H. and Zhou, J. (1998). “Optimal traffic counting locations for origin-destination matrix estimation”, Transportation Research Part B: Methodological. 32, pp.109–126.
29. Yang, H., Yang, C., Gan, L. (2006). “Models and algorithms for the screen line-based traffic-counting location problems”, Computers and Operations Research. 33(3), pp.836–858.
30. Zhou, X. and Mahmassani, H.S. (2005). “Recursive approaches for online consistency checking and OD demand updating for real-time dynamic traffic assignment operation”, Transportation Research Record. 1923, pp.218–226.
校內:2018-08-30公開