| 研究生: |
吳章偉 Wu, Chang-Wei |
|---|---|
| 論文名稱: |
血管張力素和胰島素在內皮細胞對內皮素的影響 Effects of angiotensin II and insulin on endothelin-1 gene expression in human umbilical vein endothelial cells |
| 指導教授: |
鄭瑞棠
Cheng, Juie-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 血管張力素 、胰島素 、內皮素 |
| 外文關鍵詞: | angiotensin II, insulin, endothelin-1 |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在人體,血管收縮素Ⅱ(Angiotensin Ⅱ,ANGⅡ) 和內皮素Endothelin-1 ( ET-1) 皆為體內促進血管收縮的重要物質。本項實驗的研究目的在探討在正常情況下或病態狀況下,ANGⅡ對ET-1表現的影響。
利用RT-PCR以及Real-time PCR的方法,觀察preproET mRNA的表現量。在human umbilical vein endothelin cells ( HUVECs ),給予ANGⅡ會刺激preproET mRNA的表現,在1小時後的表現最大;隨著劑量的增加,mRNA表現量也會隨之增加;這樣的作用是透過AT1 receptor活化,再經由phospholipase C和protein kinase C這條傳遞路徑所形成。
另外也發現ANGⅡ會刺激PPAR-g的表現;這樣的作用會被ETB receptor抑制劑的BQ 788阻斷。因此,推測是因ANGⅡ刺激了ET-1的增加,藉由ET-1再去刺激ETB receptor來活化PPAR-γ的基因表現。同時,也發現PPAR-γ的活化會去抑制內皮細胞的移行能力。當共同處理ANGⅡ和PPAR-γ拮抗劑(GW9662)到HUVECs,GW9662會增加原本ANGⅡ所刺激的細胞移行能力。由此推測,當內皮細胞的ET-1受到刺激時,會回饋性刺激PPAR-γ的表現,抑制內皮細胞移行,減少血管病變的產生。
另一方面,糖尿病患者常會伴隨高血壓的併發症,文獻指出insulin可能會經由活化protein kinase C ( PKC )來刺激ET-1的合成。在HUVECs,給予胰島素也會增加preproET mRNA的表現,在2小時後的表現最大;隨著劑量增加表現量也會隨之增加。而且,同時給予ANGⅡ和insulin時,preproET mRNA的上升會有加成的現象。
Hyperinsulinemia和hyperglycemia是糖尿病患者體內常見的症狀,於是,讓細胞處於高血糖或胰島素抗阻性的兩種環境,再給予ANGⅡ,觀察ET-1和PPAR-γ表現量的變化。結果發現,當細胞處於高血糖狀態下(25mM vs. 5.5mM正常組),三天後再給予ANGⅡ,發現原本ANGⅡ刺激ET-1表現的時間有提前的現象;意謂著細胞對ANGⅡ敏感性有增加的結果。另外,當先將細胞處理胰島素24小時後,再給予ANGⅡ刺激,發現ANGⅡ對ET-1的作用時間有延長的的作用。此外,在高血糖狀態或長期胰島素刺激下,PPAR-γ的表現量皆會較正常組有增加的情形。另外,再給予ANGⅡ刺激,PPAR-γ的表現量也會有明顯的改變。
綜合以上的結果,ANGⅡ會透過AT1 receptor的活化,經由phospholipase C和protein kinase C刺激ET-1的表現。增加的ET-1蛋白會活化ETB receptor進而增加PPAR-γ的基因表現;在生理功能上,PPAR-γ的活化在抑制內皮細胞移行可能扮演重要的角色。
In vivo, angiotensin II (ANG II) and endothelin-1 (ET-1) are mentioned as the potent vasoconstrictive peptide. Also, ANG II has the ability to stimulate ET-1 production. The aim of this study is to examine the effect of ANG II and insulin on ET-1 gene expression in normal or pathological conditions.
Cultured human umbilical vein endothelial cells were incubated with ANG II. Total RNA was extracted and ET-1 mRNA expression was assessed by RT-PCR. ANG II can increase preproendothelin-1 mRNA in a dose- and time-dependent manner. The presence of valsartan (an ANG II receptor type I antagonist), U733122 (the phospholipase C inhibitor) and GF109203X (the protein kinase C inhibitor) abolished this effect of ANG II. Thus, ANG II stimulates ET-1 gene expression through activation of AT1 receptor via PLC-PKC pathway.
On the other hand, ANG II also increased the peroxisome proliferator-activated receptor-g ( PPAR-g ) mRNA in a dose- and time-dependent manner. The addition of BQ788, ETB receptor antagonist, inhibited this action of ANG II indicating that increase of ET-1 protein is mediated ETB receptor to stimulate PPAR-g expression. In order to understand main function of the increased PPAR-g expression, we investigated the ability of endothelial cell migration. Treatment with PPAR-g antagonist GW9662 significantly increased the migration induced by ANG II.
Type II diabetes and hypertension are two pathologies which are frequently associated in adults , especially in developed countries. Insulin resistance has an important role in the pathogenesis and evolution of type 2 diabetes. In insulin resistance, there are two marked features: hyperinsulinemia and hyperglycemia. Thus, we investigated the effects of hyperinsulinemia and hyperglycemia on ET-1 and PPAR-g gene expression. In hyperglycemia condition, the onset of ET-1 gene expression stimulated by ANG II is accelerated. On the other hand, in hyperinsulinemia condition, the time of ET-1 gene expression stimulated by ANG II is elongated. In two conditions, PPAR-g gene expression is significantly increased regardless the stimulation with ANG II or not.
The results indicated that ANG II stimulates ET-1 gene expression via AT1 receptor-PLC-PKC signaling pathway. The increased ET-1 activates PPAR-g gene expression via ETB receptor. The increased PPAR-g expression inhibits the migration induced by ANG II. The ET-1 expression in response to ANG II is obviously increased in HUVEC under hyperinsulinemia and hyperglycemia.
Alder AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, Wright AD, Turner RC, Holman RR (2000) Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. Br Med J. 321:412-419
Buchanan TA, Meehan WP, Jeng YY, Yang D, Chan TM, Nadler JL, Scott S, Rude RK, Hsueh WA (1995) Blood pressure lowering by pioglitazone: evidence for a direct vascular effect. J Clin Invest. 96: 354–360
Capponi A. M (1996) Distribution and signal transduction of angiotensin II AT1 and AT2 receptors. Blood Press. 2(Suppl):41-46
Carey RM, Wang ZQ, Siragy HM (2000) Role of the Angiotensin Type 2 Receptor in the Regulation of Blood Pressure and Renal Function. Hypertension. 35:155-163
Chiu HC, Shih SR, Lu FJ, Yang HL (1993) Stimulation of endothelin production in cultured human endothelial cells by fluorescent compounds associated with blackfoot disease. Thromb Res. 69:139-151
de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International Union of Pharmacology. XXIII. The Angiotensin II Receptors. Pharmacol Rev. 52:415–472
Delerive P, Martin-Nizard F, Chinetti G, Trottein F, Fruchart JC, Najib J, Duriez P, Staels B (1999) Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res. 85:394-402
Diep QN, El Mabrouk M, Cohn JS, Endemann D, Amiri F, Virdis A, Neves MF, Schiffrin EL (2002) Structure, Endothelial Function, Cell Growth, and Inflammation in Blood Vessels of Angiotensin II–Infused Rats Circulation. 105:2296-2302
Dinh DT, Frauman AG, Johnston CI, Fabiani ME (2001) Angiotensin receptors: distribution, signalling and function Clin Sci. 100:481–492
Engstrom G, Hedblad B, Valind S, Janzon L (2001) Increased incidence of myocardial infarction and stroke in hypertensive men with reduced lung function. J Hypertens. 19:295-301.
Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 272:18779-18789
Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, Blaschke F, Graf K, Law RE, Fleck E, Grafe M.(2002) PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun. 293:1431-1437
Goto K, Kasuya Y, Matsuki N, Takuwa Y, Kurihara H, Ishikawa T, Kimura S, Yanagisawa M, Masaki T (1989) Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca(2+) channel in vascular smooth muscle. Proc Natl Acad Sci U S A. 86:3915–3918.
Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, Hsieh L, Greene G, Nimer SD (1995) Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 4:281-299
Green S. (1995) PPAR: a mediator of peroxisome proliferator action. Mutation Res. 333:101-109
Griendling KK, Lassegue B, Alexander, RW (1996) Angiotensin receptors and their therapeutic implications. Ann Rev Pharmacol Toxicol. 36:281-306
Haffner SM (2000) Coronary heart disease in patient with diabetes. N Eng J Med. 342:1040-1042
Harris MI, Hadden, WC, Knowler WC, Bennett PH (1987). Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in the U.S. population aged 20-74 yr. Diabetes. 36: 523-534.
Haynes WG and Webb DJ (1998) Endothelin as a regulator of cardiovascular function in health and disease J Hypertens. 16:1081–1098
Hirata Y, Emori T, Eguchi S, Kanno K, Imai T, Ohta K, Marumo F (1993) Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest. 91:1367–1373.
Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA. 86:2863–2867.
Itoh H, Doi K, Tanaka T, Fukunaga Y, Hosoda K, Inoue G, Nishimura H,Yoshimasa Y, Yamori Y, Nakao K (1999) Hypertension and insulin resistance: role of peroxisome proliferator-activated receptor gamma. Clin Exp Pharmacol Physiol. 26:558-560
Isseman I, Green S (1990) Activation of a member of steroid hormone receptor superfamily by peroxisome proliferatiors. Nature. 347:645-650
Marx N, Schonbeck U, Lazar MA, Libby P, Plutzky J (1998) Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res. 83:1097-1103
Oliver FJ, de la Rubia G, Feener EP, Lee ME, Loeken MR, Shiba T, Quertermous T, King GL (1991)Stimulation of endothelin-1 gene expression by insulin in endothelial cells. J Biol Chem. 266:23251-23256
Panzram G (1987) Mortality and survival in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 30:123-131
Pinto YM, Paul M, Ganten D (1998) Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res. 39:77-88.
Rubany GM, Polokoff MA (1994) Endothelins: Molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 46: 325–415.
Saijonmaa O, Nyman T, Fyhrquist F (1992) Endothelin-1 stimulates its own synthesis in human endothelial cells. Biochem Biophys Res Commun. 188:286-91
Shichiri M, Kato H, Marumo F, Hirata Y, (1997) Endothelin-1 as an autocrine/paracrine apoptosis survival factor for endothelial cells. Hypertension. 30:1198–1203
Szilvassy Z, Csont T, Pali T, Droy-Lefaix MT, Ferdinandy P (2001) Nitric oxide, peroxynitrite and cGMP in atherosclerosis-induced hypertension in rabbits: beneficial effects of cicletanine. J Vasc Res. 38:39-46.
Tanaka H, Sjoberg BJ, Thulesius O (1996) Cardiac output and blood pressure during active and passive standing. Clin Physiol. 16:157-170.
Terpening C, Gums JG, Grauer K (1999) Management of essential hypertension. Expert Opi Pharmacother. 1:71-80
Theodore WK and David GG (1998) Transcription-Modulating Drugs : A New Frontier in the Treatment of Essential Hypertension. Hypertension. 32:380-386
Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, and Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 45:205-251
Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR 2: Tissue-specific regulator of an adipocyte enhancer. Genes Dev.26: 1224-1234
Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 11: 433-9,
Warner TD, Mitchell JA, de Nucci G, Vane JR (1989) Endothelin-1 and endothelin-3 release EDRF from isolated perfused arterial vessels of the rat and rabbit. J Cardiovasc Pharmacol. 13:S85–S88.
Warner TD, de Nucci G, Vane JR (1989) Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat. Eur J Pharmacol. 159:325-326
Willa A, Simon J, Ronald E (2001) Control of vascular cell proliferation and migration by PPAR-g. Diabetes care. 24:392-397
Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem. 43:527-550
Zoorob RJ, Arif AM, Morelli V (2000) Hypertension. Primary Care Clin Off Prac. 27:589-614