| 研究生: |
吳振瑋 Wu, Jhen-Wei |
|---|---|
| 論文名稱: |
以修正後細胞自動機方法模擬對流效應影響鋁銅合金之微觀凝固過程 A Modified Cellular Automaton Model for the Simulation of Micro-Solidification Processes of Aluminum-Copper Alloy with convection |
| 指導教授: |
趙隆山
Chao, Long-sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | MCA法 、枝狀晶 、凝固過程 |
| 外文關鍵詞: | Solidification, Dendrites, Modified Cellular Automaton Method |
| 相關次數: | 點閱:49 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝固過程是金屬材料鑄造中的重要階段,決定材料性能優劣的微觀組織在此階段形成,其中本文所關心的是澆注時金屬液流動速度對於枝狀晶成長型態的影響。
本文採用修正後自動細胞機方法(Modified cellular automaton method, MCA method)模擬流場效應對鋁銅合金凝固過程中枝狀之晶微組織的影響。本文以巨觀熱傳為基礎,結合微觀的成核、成長模式,並且在微觀濃度之計算中加入金屬液之流動,在液固相的變化過程中,預測枝狀晶在流場效應下之成長型態。在成長模式中,本文根據 KGT (Kurz-Giovanola-Trivedi)模型計算枝狀晶頂端之速度。
本文以上述之模式模擬自由枝狀晶在流場效應下的凝固過程,觀察流場效應對枝狀晶頂端成長速度、溶質分布所造成的影響,並討論枝狀晶不同位置受到流場影響所產生之差異性。另外,本文選擇不同的優先成長角度和不同的流速去觀察不同枝狀晶成長型態間的異同,並利用枝狀晶頂端成長速度隨著時間的變化去分析金屬液流動對成長型態的影響。因枝狀晶成長對流場的改變本文亦作深入的探討。
Solidification is a crucial process in casting metal material. The microstructure is formed at this stage. Indeed, this research aims at the flow impact for the growth patterns of a dendrite during the solidification process.
This research has adopted the Modified cellular automaton (MCA) model to simulate the effects on dendritic microstructures during the Al-Cu alloy solidification. Based on the macro-model of heat transfer, microscopic nucleation, growth kinetics, and the liquid flow in the solute calculation are considered to predict the growth patterns of a dendrite. This research calculates the velocity of a dentritic tip using the KGT model.
In the proposed study, the tip growth velocity and solute distribution are observed to analyze the flow impact, and the differences between the observed locations of the dendrite are further discussed. In addition, the research has predetermined various growth angles and uniform velocities to study the similarities and dissimilarities between dentritic morphologies. Moreover, the study uses the profile of tip growth velocity vs. calculation time to evaluate the convection effect on the growth patterns. It has also brought a deeper discussion regarding to the flow variations influenced by the dentritic growth.
[1] Voller, V. R., ”Micro-macro modeling of solidification processes and phenomena,” Proceedings of the Conference on Computational Modeling of Materials, Minerals and Metals Processing, Vol.A31, pp. 41-61, 2001.
[2] Stefanescu, D. M., “Methodologies for modeling of solidification microstructure and their capabilities,” ISIJ International, Vol.35, pp.637-650,1995.
[3] Oldfield, W., “A Quantitative Approach to casting Solidification, Freezing of Cast Iron,” ASM Trans., Vol.59 , pp945-960, 1966.
[4] Stefanescu, D. M., Trufinescu, S. Z., “Crystallization Kinetics of Grey Cast Iron,” Metallkunde, Vol.65, pp.610-615, 1974.
[5] Hunt, J. D., “Steady State columnar and equiaxed growth of dendrites and eutectic,” Materials Science and Engineering, Vol.65, pp.75-83, 1984.
[6] Dustin, I., Kurz, W., ”Modeling of cooling curves and microstructures during equiaxed dendritic solidification,” Zeitschrift fuer Metallkunde, Vol.77, pp.265-273, 1986.
[7] Spittle, J. A. and Brown, S. G., “Computer simulation of the effects of alloy variables on the grain structures of castings,” Acta Metallurgica et Materialia, Vol.37, pp.1803-1810, 1989.
[8] Zhu, P. and Smith, R. W., “Dynamic simulation of crystal growth by Monte Carlo method.-I. Model description and kinetics,” Acta Metallurgica et Materialia, Vol.40, pp.683-692, 1992.
[9] Zhu, P. and Smith, R. W., “Dynamic simulation of crystal growth by Monte Carlo method. II. Ingot microstructures,” Acta Metallurgica et Materialia, Vol.40, pp.3369-3379, 1992.
[10] Smith, G. D., “On the mechanism of crystal nucleation at high adsorb ate cover ages,” Journal of Vacuum Science and Technology, Vol.10, pp.407-408, 1973.
[11] Rappaz, M. and Gandin, Ch. A., ”Probabilistic modelling of microstructure formation in solidification processes,” Acta Metall. Mater., Vol.41, pp.345-360, 1993.
[12] Charbon, Ch. and Rappaz, M., “3D Probablistic modelling of equiaxed eutectic solidification,” Modelling and Simulation in Materials Science and Engineering, Vol.1, pp.455, 1993.
[13] Chang, S. and Stefanescu, D. M., “Model for inverse segregation: the case of directionally solidified Al-Cu alloys,” Acta Materialia, Vol.44, pp.2227-2235, 1996.
[14] Sen, S., Juretzko, F., Stefanescu, D. M., Dhindaw, B. K., Curreri, P. A., ”In situ observations of interaction between particulate agglomerates and an advancing planar solid/liquid interface: Microgravity experiments,” Journal of Crystal Growth, Vol.204, pp.238-242, 1999.
[15] Zhu, M. F and Hong, C. P., “A Modified Cellular Automaton Model for the Simulation of Dendritic Growth in Solidification of Alloys,” ISIJ, Vol.41, pp.436-445, 2001.
[16] Zhu, M. F., Kim, J. M., Hong, C. P., ”Modeling of Globular and Dendritic Structure Evolution in Solidification of an Al-7%Si Alloy,” ISIJ, Vol.41, pp.992-998, 2001,
[17] Collina, J. B., Lenin, H., “Diffuse interface model of diffusion-limited crystal growth,” Physical Review B, Vol.31, pp.6119-6122, 1985.
[18] Kobayashi, R., “Modeling and Numerical Simulations of Dendritic Crystal Growth,” Physical Review D, Vol.63, pp.410-423, 1993.
[19] Eggleston, J. J., McFadden, G. B. and Voorhees, P. W., “ A phase-field model for highly anisotropic interfacial energy,” Physica D, Vol.150, pp.91-103,2001.
[20] Zhu, M. F., Lee, S. Y. and Hong, C. P. “Modified cellular automaton model for the prediction of dendritic growth with melt convection,” Physical Review E, Vol.69, pp1-12, 2004.
[21] Shin, Y. H., Hong, C. P. “Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface,” ISIJ, Vol.42, pp.359-367, 2002.
[22] Boettinger, W. J., Coriell, S. R., Greer, A. L., Karma, A., Kurz, W., Rappaz, M. and Trivedi, R., “Solidification microstructure: Recent developments,future directions,” Acta Materialia, Vol.48, pp43-70, 2000.
[23] Kurz, W., Fisher, D. J., “Fundamentals of Solidification,” Trans Tech Publication 4thed, 1988
[24] Kurz, W., Giovanola, B., Trivedi,R., “Theory of microstructural development during rapid solidification,” Acta Metallurgica. Vol.34, pp. 823-830, 1986.
[25] 彭勳章,”澆鑄與凝固過程之三維數值分析”, 國立成功大學工科所碩士論文,1999
[26] Juric, D., Tryggvason, G., “A front-tracking method for dendritic solidification,” Computational Physics, Vol.1, pp127-148, 1996.
[27] S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” P. 126
[28] X. Tong, C. Beckermann, A. karma, and Q. Li “Phase-field simulations of dentritic crystal growth in a forced flow,” Phys. Rev. E
[29] H.S. Udaykumar, S. Marella, and S. Krishnan, “Sharp-interface simulation of dendritic growth with convection: benchmarks ,”2003
[30] G. Tryggvason, B. Bunner, A. Esmaeeli,D. Juric,N. Al-Rawahi,W. Tauber, J. Han,S. Nas,and Y. J. Jan, “A Front-Tracking Method for the Computations of Multiphase Flow,”
[31] R. Tonhardt and G. Amberg “Simulation of natural convection effects on succinoinitrile crystal,”2000
[32] R. Tonhardt and G. Amberg “Dentritic growth of randomly oriented nuclei in a shear flow ,”2000
[33] R. Tonhardt and G. Amberg “Phase-field simulations of dentritic growth in a shear flow ,”1998
[34] C.W. Lan, CM. Hsu, and C.C. Liu “Efficient adaptive phase field simulation of dentritic growth in a forced flow at low supercooling,” J. Cryst. Growth, 241(2002)
[35] C.W. Lan, CM. Hsu, C.C. Liu, and YC Chang “Adaptive phase field simulation of dentritic growth in a forced flow at various supercooling,” ,Phys. Rev. E
[36] D. Pal, J. Bhattacharya, and P. Dutta “An Enthalpy Model For Simulation Of Dentritic Growth,” (2006), p 59-78
[37] Peter Matic, Andrew B. Geltmacher “A cellular automaton-based technique for modeling mesoscale damage evolution ,”(2001)
[38] Zhu, M. F.,Dai T, Lee, S. Y. and Hong, C. P. “Modeling of solutal dendritic growth with melt convection,”(2008)
[39] 張恭豪,”澆注過程之三維數值分析”,國立成功大學工科所碩士論文,1997
[40] 林盈佐,”凝固顯微組織與模式分析”,國立成功大學工科所碩士論文,1998
[41] 謝定華,”網狀晶之穩態成長模式分析”,國立成功大學工科所碩士論文,1998.
[42] 李明龍,”澆注過程之模式分析”,國立成功大學工科所碩士論文,2001
[43] 黃婷薰,”以修正後細胞自動機方法模擬鋁銅合金之微觀凝固過程”,國立成功大學工科所碩士論文,2006