簡易檢索 / 詳目顯示

研究生: 徐裕翔
Hsu, Yu-Hsiang
論文名稱: 奈米碳管場發射特性模擬研究
Simulation Study of Field Emission Property for Carbon nanotubes
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 185
中文關鍵詞: 場發射奈米碳管空間電荷效應
外文關鍵詞: space charge effect, Carbon nanotube, field emission
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文利用MRC公司發展的電漿粒子式有限差分時域MAGIC電腦模擬程式進行奈米碳管場發射特性模擬,針對電子倍增元件及雙極式二極體結構下單根及多根奈米碳管場發射電子源進行模擬,探討奈米碳管在不同結構設計下空間電荷效應的影響。

      在場發射電子倍增元件部份,元件入口孔徑為 160μm時,孔徑邊緣恰於發射陰極兩側閘極上方,使發射性質具有輸入低電壓而產生較高的發射電流,而在元件入口孔徑為240μm時電流倍增效果較佳。
    在雙極式二極體結構部份,多根奈米碳管結構中在碳管間距越大及中間碳管越高時,使場發射電流越早趨於飽和。在單根奈米碳管結構部份,電子束溫度對於場發射特性曲線影響甚小,但對電子束發散寬度而言,空間電荷效應使得發射電流趨向飽和時,溫度較高者電子發散寬度較明顯增加。在發射電子的能量部份,陽極電壓的驅使下使空間電荷效應大到足以讓發射電流趨向於飽和狀態時,能量分佈曲線上下劇烈震盪的現象越大。

      In this study, we simulate the field emission property for carbon nanotubes by the plasma Particle-In-Cell Finite-Difference Time-Domain method MAGIC computer simulation program of MRC Company. We discuss space charge effect and temperature effect in field emission electron source for electron-multiplier device and carbon nanotubes.

      Part of field emission electron-multiplier structure component, when the entry aperture of the component is 160μm, the aperture edge is just above both sides of emission cathode, field emission characteristic have import low field emission initial voltage to produce higher current density. If the entry aperture of the component is 240μm, the devices have batter current amplification.

      Part of the bipolar structure component, the field emission current tends to saturation condition by increase interval and height of carbon nanotubes bundle arrays. As to one nanotubes structure, from the result of simulation, field emission current is not influenced by electronic temperature, but if field emission current tend to saturation status by space charge effect, the high-temperature electron beam is wider than the low-temperature electron beam. As to emission electron energy, when the device has space charge effect caused by high voltage, the energy distribution plot is shake violently

    誌謝......................................Ⅰ 中文摘要..................................Ⅱ 英文摘要..................................Ⅲ 目錄......................................Ⅳ 圖目錄....................................Ⅵ 表目錄....................................ⅩⅧ 第一章 簡介 1-1 平面顯示器簡介........................2 1-2 奈米碳管場發射特性分析................4 1-3 奈米碳管場發射顯示器簡介..............8 1-4 研究目的..............................12 第二章 文獻回顧 2-1 場發射實驗研究回顧....................14 2-2 場發射模擬研究回顧....................24 第三章 場發射原理與模擬研究方法 3-1 場發射原理............................31 3-2 場發射模擬方法........................37 3-2-1 MAGIC模擬軟體程式...................37 3-2-2 研究方法............................37 3-2-3 格網畫法............................41 3-2-4 模擬參數設定........................42 3-2-4a 高電場發射元件(High field emission)模擬設定........................................43 3-2-4b 電流場發射元件(Beam emission)模擬設定..43 第四章 電子倍增管不同尺寸結構對場發射特性之影響與分析 4-1 電子倍增管的結構介紹...............51 4-2 電子倍增管的間隔與孔徑大小不同之模擬結果 .................................55 4-2-1 電子倍增管之結構模擬.........55 4-2-2 電子倍增管之電位模擬.........68 4-2-3 電子倍增管之電流密度模擬.....72 4-2-4 電子倍增管之電子軌跡模擬.....77 4-3 模擬結果與討論....................81 第五章 奈米碳管之空間電荷效應的模擬結果與討論 5-1 奈米碳管之陣列對空間電荷的影響與分析..100 5-1-1 奈米碳管尺寸結構之模擬.........100 5-1-3 奈米碳管不同間距及高度對電子軌跡及電流 密度之影........................111 5-1-2 奈米碳管不同間距及高度對電位梯度之影響 ................................128 5-1-4 奈米碳管不同間距及高度對場發射特性曲線 之影響..........................138 5-2 不同溫度影響奈米碳管發射特性的模擬結果與討論 ..................................144 5-2-1 空間電荷特性曲線對不同溫度之模擬..144 5-2-2 電子束溫度對不同溫度之模擬.......150 5-2-3 溫度對發射電子能量之模擬.........155 5-2-3-1 發射電子總能量分佈模擬結果.155 5-2-3-2 發射電子X-方向能量分佈模擬結果 ..................................164 5-2-3-3 發射電子Y-方向能量分佈模擬結果 ..................................171 第六章 結論...............................178 參考文獻....................................182

    [1] M. Tanemura, V. Filip, K. Iwata, Y. Fujimoto, F. Okuyama, D. Nicolaescu,
    and H. Sugie, J. Vac. Sci. Technol.B 20, 122 (2002).
    [2] S. Iijima, Nature 354, 56 (1991).
    [3] W. A. deHerr, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
    [4] P. G. Collins and A. Zettl, Phys. Rev. B 55, 9391 (1997).
    [5] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss,
    Appl. Phys. Lett. 70, 3308 (1997).
    [6] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl.
    Phys. Lett. 76, 3813 (2000).
    [7] O. Groning, O. M. Kuttel, Ch. Emmenegger, P. Groning, and L. Schlapbach,
    J. Vac. Sci. Technol. B 18, 665 (2000).
    [8] Jean-Marc Bonard, Hannes Kind, Thomas Stöckli, Lars-Ola Nilsson, solid-
    state electronics 45 893-914 (2001)
    [9] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek,
    P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269, 1550 (1995).
    [10]P. G. Collins, and A. Zettl, Phys. Rev. B 55, 9391 (1997).
    [11]Jung Sang Suh, Kwang Seok Jeong, and Jin Seung Lee, Appl. Phys. Lett. 80,
    2392 (2002)
    [12]Y. Satio, K. Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka, F. Ikazaki, M.
    Yumura, A. Kasuya, and Y. Nishina, Appl. Phys. A 67, 95 (1998).
    [13]http://www.candescent.com/Candescent/default.htm
    [14]C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys.
    47, 5248 (1976).
    [15]N. Liu, Z. Ma, and X. Chu, J. Vac. Sci. Technol. B 12, 1712 (1994).
    [16]A. A. Dadykin, and A. G. Naumovets, Diamond and Related Materials. 5, 771
    (1996).
    [17]Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss,
    Appl. Phys. Lett. 70, 3308 (1997).
    [18]J. M. Bonard, J. P. Salvetat, T. Stockli, Walt A. de Heer, L. Forro, and
    A. Chatelain, Appl. Phys. Lett. 73, 918 (1998).
    [19]S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and
    H.Dai, Science 283, 512 (1999).
    [20]S. Uemura , J. Yotani , T. Nagasako , H. Kurachi , H. Yamada , T. Ezaki ,
    T. Maesoba , T. Nakao , Y. Saito , and M. Yumura , IDMC , 75 (2003).
    [21]科學發展期刊,2004年10月 382期。
    [22]C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R.
    Westerberg, IEEE Trans. Electron Devices ED-36, 225 (1989).
    [23]C. Xie , Y. Wei , R. Lucero, and R. Woodburn , J. Vac. Sci. Technol. B 18,
    1833 (2000).
    [24]C. Xie, G hayes, and Y. Wei, J. Vac. Sci. Technol. B 19, 527 (2001).
    [25]V.semet, V. T. Binh, P. Vincent, and D. Guillot, Appl. Phys. Lett. 81, 343
    (2002).
    [26]Zhi Xu, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 87, 163106 (2005).
    [27]X.C. Ma, E. G. Wang, W. Z. Zhou, D. A. Jefferson, J. Chen, S. Z. Deng, N.
    S. Xu, and J. Yuan, Appl. Phys. Lett. 75, 3105 (1999).
    [28]L. Nisson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L.
    chlapback , H. Kind, J-M. Bonard, and Kern, Appl. Phys. Lett. 76, 2071
    (2000).
    [29]Hee Jin Jeong, Seong Chu Lim, Keun Soo Kim, Young Hee Lee, Letters to the
    Editor / Carbon 42 3036–3039 (2004)
    [30]C. S. Chang, S. Chattopadhyay, and L. C. Chen, PHYSICAL REVIEW B 68,
    125322 (2003)
    [31]M. Sveningsson, K. Hansen, K. Svensson, E. Olsson, and E. E. B. Campbell,
    PHYSICAL REVIEW B 72, 085429 (2005)
    [32]M. Sveningsson, M. Jönsson, O. A. Nerushev, F. Rohmund, and
    E. E. B. Campbell, Appl. Phys. Lett. 81, 1095 (2002).
    [33]Kenneth A. Dean and Babu R. Chalamala, Appl. Phys. Lett. 76, 375 (2000).
    [34]S. T. Purcell, P. Vincent, C. Journet, and Vu Thien Binh PHYSICAL REVIEW
    LETTERS 88, 105502-1 (2002)
    [35]Kenneth A. Dean, Timothy P. Burgin, and Babu R. Chalamala, Appl. Phys.
    Lett. 79,1873 (2001).
    [36]Koichi Hata, Akihiro Takakura, Yahachi Saito, Ultramicroscopy 95 107–112
    (2003)
    [37]Russell D. Young and Erwin W. Müller, PHYSICAL REVIEW 113 115 (1959)
    [38]C. K. Birdsall and A. b. Langdon, Plasma Physics via Computer Simulation,
    IOP Publishing Ltd, London, 1991.
    [39]R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, IOP
    Publishing Ltd, Bristol, 1988.
    [40]C. K. Birdsall, IEEE Trans. Plasma Science, vol. 19, p. 65, 1991.
    [41]J. M. Dawson, Rev. Mod. Phys. Vol. 55, p. 403, 1983.
    [42]A. C. J. Paes et al., Brazilian J. Phys. vol. 33, p. 411, 2003.
    [43]L. Wei, W. Baoping, T. Linsu, Y. Hanchun, T. Yan ,et al , J. Appl. Phys.
    19, 2704 (2000).
    [44]Y. Hu, C.H. Chuang, J. Appl. Phys. 21, 1648 (2003).
    [45]D. Nicolaescu, L.D. Filip, S. Kanemaru and J. Itoh, Jpn. Joul. Appl. Phys.
    43, 485 (2004).
    [46]Sungil Bae, Woo Jong Seo, Seungho Choi, Soonil Lee, and Ken Ha Koh
    J. Vac. Sci. Technol. B 22(3) 1303 (2004)
    [47]Russell D. Young, PHYSICAL REVIEW 113 110 (1959)
    [48]賴俊村, 物理雙月刊, 二十一卷二期, p. 298 (1999).
    [49]R. H. Fowler and I. W. Nordheim, Proc. Roy. Soc. Vol. A 119, 173 (1928)
    [50]A. Modinos, Plenum Press, New York (1938).
    [51]B. Goplen , L. Ludeking , and D. Smithe, MAGIC3D User’s Manual , Mission
    Reasearch Corp. ,MRC/WDC-R-402, 1997.
    [52]楊經國, 冉瑞江, 杜定旭, 劉新民, 光電子技術, p179 (1990)
    [53]應根裕, 徐淦卿, 電子器件, p47 (1990)
    [54]M. Sedlacek, Electron Physics of Vacuum and Gaseous Device, John Wiley &
    Sons, INC., 1996
    [55]藍永強, 博士論文, 真空三極體結構研究-從場發射真空微三極體到反射
    式三極體之虛陰極振盪器, 國立清華大學, 民國91年。
    [56]林自強, 碩士論文, 奈米碳管場發射元件聚焦特性之電腦模擬研究, 國立清華大學,
    民國93年。
    [57]廖克斌,碩士論文, 奈米碳管場發射顯示器之模擬研究, 國立清華大學,
    民國94年。

    下載圖示 校內:2011-07-07公開
    校外:2011-07-07公開
    QR CODE