簡易檢索 / 詳目顯示

研究生: 石文宏
Shi, Wen-Hong
論文名稱: 共平面內浮動圓環孔型電極液晶透鏡陣列製作與其應用於積分成像系統
Fabrications of coplanar inner floating ring hole-patterned electrode liquid crystal lens arrays and applications in the integral imaging system
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 液晶透鏡圓環孔型電極等效電路模型積分成像系統
外文關鍵詞: liquid crystal lens, coplanar inner floating ring electrode, electric circuit model, integral imaging system
相關次數: 點閱:83下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究共平面內浮動圓環孔型電極液晶透鏡陣列(coplanar inner floating ring hole-patterned electrode liquid crystal lens arrays, CIFR-HPELCLA),並根據其對應之等效電路模型,探討浮動圓環孔型電極液晶透鏡陣列之結構參數對操作頻率與電壓之影響,並藉由調整NOA65介電層厚度產生電容值改變以改善液晶透鏡之性能,最後將所製作之液晶透鏡陣列應用於積分成像系統(Integral Imaging system)上,探究其性能表現。
    實驗製作的共平面內浮動圓環孔型電極液晶透鏡與傳統圓孔型電極液晶透鏡皆是透過施加電壓於液晶層,產生軸對稱的非均勻電場分佈(Fringing field),使液晶分子轉動形成折射率梯度分佈,當光通過液晶透鏡可達到匯聚或發散的能力。共平面內浮動圓環孔型電極製程簡單,在傳統圓孔型電極中增加一同心圓環浮動電極,使液晶透鏡中心亦產生電場分佈,透過等效電路模型可知兩者對液晶分子方向分佈與相對應的透鏡能力之差異。
    共平面內浮動圓環孔型電極液晶透鏡陣列與傳統圓孔型電極液晶透鏡陣列,經過NOA65介電層厚度之影響、焦距量測、波前誤差、調制轉換函數值(Modulation Transfer Function,MTF)評估與應用於積分成像系統之影像等比較之下,可發現確實改善了整體液晶透鏡的能力。

    A type of liquid crystal lens array composed of lens units with hole-patterned electrode inside a coplanar inner floating ring electrode (CIFR), briefly nemed as CIFR-HPELCLA (i.e., coplanar inner floating ring hole-patterned electrode liquid crystal lens array) was investigated. The electric circuit model was used to analyze and discuss the CIFR electrode affected the overall performance of CIFR-HPELCLA. We did experiments to compare the electro-optical performance between the traditional HPELCLA and CIFR-HPELCLA including electrically driving frequencies, voltages, and the thicknesses of the dielectric layer. Finally, both of HPELCLA and CIFR-HPELCLA were applied to the integral imaging system to compare their individual image performance.

    摘要 I Abstract II 致謝 IX 目錄 X 圖目錄 XIII 表目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 9 第二章 實驗原理 10 2.1 液晶材料特性 10 2.1-1 液晶的起源與分類 10 2.1-2 液晶的光學特性 11 2.2 圓孔型電極液晶透鏡 14 2.2-1 圓孔型電極液晶透鏡原理 14 2.2-2 圓孔型電極液晶透鏡之焦距與干涉條紋關係 17 2.2-3 液晶透鏡之不連續線原因與解決方法 20 2.3 共平面內懸浮圓環孔型電極液晶透鏡等效電路模型 23 2.4 調制轉換函數(Modulation transfer function, MTF)原理 27 2.5 積分成像系統原理 30 第三章 實驗製程與方法 32 3.1 HPELCLA與CIFR-HPELCLA之製作過程 32 3.1-1 圖樣電極製作 32 3.1-2 NOA65介電層塗佈 34 3.1-3 配向層塗佈 35 3.1-4 液晶透鏡製作 36 3.2 液晶透鏡陣列的光學特性量測 39 3.2-1 干涉條紋量測 40 3.2-2 焦距量測 41 3.2-3 調制轉換函數值量測 42 3.3 積分成像系統 43 第四章 實驗結果與討論 45 4.1 NOA65膜厚控制與測量 45 4.2 HPELCLA與CIFR-HPELCLA比較 48 4.2-1 NOA65膜厚對HPELCLA與CIFR-HPELCLA(水平配向結構)之影響 48 4.2-2 NOA65膜厚對HPELCLA與CIFR-HPELCLA(水平-垂直混合配向結構)之影響 57 4.2-3 HPELCLA與CIFR-HPELCLA之焦距量測 67 4.2-4 HPELCLA與CIFR-HPELCLA之波前誤差比較 68 4.2-5 HPELCLA與CIFR-HPELCLA與玻璃透鏡之調制轉換函數值評估比較 69 4.3 HPELCLA與CIFR-HPELCLA應用於積分成像系統 72 4.3-1 HPELCLA與CIFR-HPELCLA使用擷取單元影像方式應用於積分成像系統 72 4.3-2 HPELCLA與CIFR-HPELCLA使用光學動畫軟體生成單元影像方式應用於積分成像系統 74 第五章 結論與未來展望 76 5.1 結論 76 5.2 未來展望 77 參考文獻 78

    [1] H. Ren et al., “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys., Part 1, 43, 652-653 (2004)
    [2] J. Liu et al., “A focus-switchable lens made of polymer-liquid crystal composite,” J. Cryst. Growth., 288, 192-164 (2006)
    [3] M. Ye and S. sato, “Optical properties of liquid crystal lens of any size,” Jpn. J . Appl. Phys. , 41, L571-L573 (2002)
    [4] S. sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J . Appl. Phys. , 18, 1679 (1979)
    [5] M. Yu. Loktev et al., “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum., Vol. 71, No. 9 (2000)
    [6] Mao Ye, Bin Wang, and Susumu Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” APPLIED OPTICS., Vol. 43, No. 35 (2004)
    [7] Yung-Yuan Kao and Paul C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors, 11, 5402-5415 (2011)
    [8] T. Galstian et al., “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Opt.Lett., 41, 3265-3269 (2016)
    [9] C. J. Hsu et al., “Large aperture liquid crystal lens with an imbedded
    floating ring electrode,” Opt. Express., 24, 16722-16732 (2016)
    [10] Jeroen Beeckman et al., “Multi-electrode tunable liquid crystal lenses with one lithography step,” Opt. Lett. 18, 0146-9592 (2018)
    [11] 松本正一‧角田市良合著,“液晶之基礎與應用”,國立編譯館,中華民國九十四年
    [12] Mouquinho A, Petrova K, Barros M T, and Sotomayor J, “New Polymer Networks for PDLC Films Application,” New Polymers for Special Applications, Chapter 5, 139-164 (2012)
    [13] Bruce A. Averill and Patricia Eldredge, “Chemistry: Principles, Patterns, and Applications,” 1st. Edition, Chap. 11
    [14] J. Cao and B. J. Beren, “Theory of polarizable liquid crystals : Optical birefringence,” J. Chem. Phys., 99 (1993)
    [15] F. C. Frank, “On the theory of liquid crystals,” Faraday SOC. 25, p.19, (1958)
    [16] P. J. Collings and M. Hird, “Introduction to Liquid Crystals Chemistry and Physics,” Taylor & Francis, London (1997)
    [17] M. Ye, B. Wang, T. Takahashi and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev., 14, 173-175 (2007)
    [18] H. W. Ren et al., “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express., 15, 11328 (2007)
    [19] 張繼鴻,“發展一可用電壓調控焦距的液晶元件”,私立中原大學應用物理研究所碩士論文,中華民國九十二年
    [20] T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., 31, 1643-1646 (1992)
    [21] Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Master., 21, 643-646 (2002)
    [22] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li, M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt., 43, 4269-4274 (2012)
    [23] M. Ye, B. Wang and S. Sato, “Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field,” Jpn. J. Appl. Phys., 42, 5086-5089 (2003)
    [24] C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express., 19, 14999-15008 (2011)
    [25] Yung-Hsiang Hsu, Bo-Yu Chen, and Chia-Rong Sheu, “Improvement of Hole-Patterned Electrode Liquid Crystal Lens by Coplanar Inner Ring Electrode,” IEEE Xplore., 1041-1135 (2019)
    [26] M.Estribeau and P.Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slantededge methodology,” Proc. SPIE, vol. 5251. pp. 243 252. (2004)
    [27] Greer P. B, van Doorn T, “Evaluation of an algorithm for the Assessment of the MTF using an edge method,” Med. Phys, 27(9), 2048~2059(2000)
    [28] F. Okano et al., “Three-dimensional video system based on integral photography,” Opt. Eng., 38, p.1072, (1999)
    [29] C. Jang, C. K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements,” Appl. Opt., 55, A71-A85 (2016)
    [30] K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett., 39(1), 127-130 (2014)
    [31] 陳柏瑜,“共平面內部環形電極於圓孔型液晶透鏡之光電性能改善”,國立成功大學,光電科學與工程學系碩士論文,中華民國一百零八年

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE