| 研究生: |
周信賢 Chou, Hsin-Hsien |
|---|---|
| 論文名稱: |
上流式厭氣污泥床反應器質傳/反應動力及溫度效應 Mass Transfer/Reaction Kinetics and Its Temperature Effects in UASB Reactors |
| 指導教授: |
葉宣顯
Yeh, Hsuan-Hsien 黃汝賢 Huang, Ju-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 非抑制性基質 、抑制性基質 、溫度效應 、質傳阻抗 、上流式厭氣污泥床 、intrinsic動力 、apparent動力 、動力模式 、經驗模式 、甲烷菌分率 、污泥顆粒特性 、模式驗證 |
| 外文關鍵詞: | non-inhibitory substrate, inhibitory substrate, temperature effect, mass transfer resistance, upflow anaerobic sludge bed, intrinsic kinetics, apparent kinetics, kinetic model, empirical model, mass fraction of methanogens, granule characteristics, model validation |
| 相關次數: | 點閱:222 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
上流式厭氣污泥床(upflow anaerobic sludge bed, UASB)反應器為氣液固三相並存之生化反應器,故在基質去除過程(overall substrate removal),除了須考慮厭氣微生物所進行之生化反應外,亦須考慮顆粒化污泥所造成之質傳阻抗。本研究不僅建立涵蓋有intrinsic動力、污泥顆粒特性參數、生物/物理參數、污泥顆粒菌相分層結構及酸化菌和甲烷菌分率之UASB反應器質傳/反應動力模式,另為簡化模式計算之困難度,本研究亦由質量平衡關係建立涵蓋有apparent動力之經驗模式。接著以UASB反應器(us = 0.5、1.0、2.0及4.0 m/h)處理抑制性酚基質(溫度= 25℃, 30℃, 35℃, and 40℃)及非抑制性蔗糖基質(溫度= 35℃)合成廢水,以獲得穩定操作狀態下之系統出流水質、污泥顆粒特性及反應器流況之實驗數據,並以獨立批次實驗分別測定酚和蔗糖厭氣降解之intrinsic和apparent動力常數、強化培養乙酸甲烷菌intrinsic動力常數,以及酸化菌和甲烷菌分率,最後進行兩種模式之模擬及實驗驗證。
UASB反應器(溫度= 30℃、35℃及40℃;us = 0.5、1.0、2.0及4.0 m/h;體積負荷率= 10.53 kg COD/m3-d)處理抑制性酚基質時,皆可達到良好之處理效果(COD去除率97.3%以上),惟體積負荷率提高至13.76 kg COD/m3-d時,COD去除率驟降為76.1%,此時,UASB反應器液相中酚濃度達452 mg/L,而VFAs濃度僅82 mg acetate/L,意謂著酸化反應為酚基質去除之速率限制步驟。處理非抑制性蔗糖基質時,COD去除率隨著體積負荷率(7.94 ~ 13.76 kg COD/m3-d)之增加而下降,主要為VFAs累積(202 ~ 1096 mg acetate/L)之故,意謂著甲烷化反應為蔗糖基質去除之速率限制步驟。
由懸浮生長批次反應器測得酚厭氣降解、酚厭氣酸化及乙酸甲烷化之intrinsic動力常數kp、k1,p及k2值皆隨著溫度(25℃ ~ 40℃)之增加而變大,而intrinsic動力常數Ks1,p及Ks2則隨著溫度之增加而變小。依溫度範圍(25℃ ~ 40℃)測得之所有kp、k1,p及k2值估算求得之活化能(Ea)及溫度係數()值分別為3063、5640、6505 cal/mole及1.017、1.030、1.042;依相同溫度範圍測得之所有Ks1,p及Ks2值估算求得之值分別為0.941及0.953,即甲烷菌受溫度之影響程度大於酸化菌者。在中溫範圍(25℃ ~ 40℃)求得UASB反應器系統(us = 0.5、1.0、2.0、4.0 m/h)之比酚利用速率之Ea (778 ~ 1810 cal/mole)及值(1.003 ~ 1.008)遠小於批次反應器酚厭氣降解者(Ea = 3063 cal/mole, = 1.017),意謂著溫度對UASB反應器之污泥顆粒(微生物)降解酚之影響效應較批次反應器之dispersed sludge者為小。酚厭氣降解(35℃)之intrinsic動力常數kp及Ki,p與apparent動力常數kp'及Ki,p'並無明顯差異,但apparent動力常數Ks,p'則明顯大於intrinsic動力常數Ks,p,亦即顆粒污泥之質傳阻抗反映在Ks值之增加。蔗糖厭氣降解之intrinsic動力常數ks大於apparent動力常數ks',而intrinsic動力常數Ks,s小於apparent動力常數Ks,s',比較酚及蔗糖厭氣酸化之intrinsic動力常數,蔗糖厭氣酸化之intrinsic動力常數k1,s為酚厭氧酸化之intrinsic動力常數k1,p之38倍,而intrinsic動力常數Ks1,s為intrinsic動力常數Ks1,p之10倍。
處理抑制性酚基質及非抑制性蔗糖基質之污泥顆粒粒徑皆隨著體積負荷率(7.94 ~ 13.76 kg COD/m3-d)之增加而增大,且處理酚基質之污泥顆粒粒徑略小於處理蔗糖基質者,但前者之污泥顆粒結構較為緊密。由掃描式電子顯微鏡(scanning electron microscopy, SEM)之觀察,處理酚基質之污泥顆粒菌相結構呈均勻分佈,而處理蔗糖基質之污泥顆粒菌相結構則呈分層狀,外層為酸化菌群,內層為甲烷菌群。在體積負荷率7.94 ~ 13.76 kg COD/m3-d之操作下,處理酚基質及蔗糖基質之UASB反應器(溫度= 35℃;us = 2.0 m/h)中甲烷菌分率皆隨著體積負荷率之增加而降低。
UASB反應器處理抑制性酚基質及非抑制性蔗糖基質時,質傳阻抗對基質去除速率(overall substrate removal rate)之影響不可忽略。事實上,污泥顆粒內之質傳阻抗對基質去除速率之影響相當大,且處理蔗糖基質者明顯大於處理酚基質者,而在迴流操控之UASB反應器中,外部質傳阻抗對基質去除速率之影響則不大。以質傳/反應動力模式及經驗模式模擬所得UASB反應器之酚去除率及COD去除率與實驗值之誤差皆在4%之範圍內,且以上述兩種模式模擬之UASB反應器COD去除率之差異百分比僅有0.47 ~ 3.78%,意謂著簡化計算之經驗模式頗適合用在UASB反應器功能設計之工程實務上。最後,藉由質傳/反應動力模式之模擬結果,UASB反應器在體積負荷率7.94 ~ 10.53 kg COD/m3-d下,效益因子(1,s、1,p)皆隨著污泥顆粒粒徑(dp)之增大而變小,且1,s隨dp增大而變小之程度比1,p者大;惟在高體積負荷率(13.76 kg COD/m3-d)下,1,p隨dp之增大而變大,主要是因抑制性酚基質在UASB反應器內之apparent反應速率大於intrinsic反應速率。
An upflow anaerobic sludge bed (UASB) reactor is a three-phase (gas- liquid-solids) biochemical reactor. Thus in the overall substrate removal process, not only the occurrence of anaerobically biochemical reaction needs to be taken into account, but the existence of mass transfer resistance in granular sludge also needs to be taken into consideration. In this work, a mass transfer/reaction kinetic model for overall substrate removal in the UASB reactor was developed. This model incorporated intrinsic kinetics, characteristic parameters of sludge granules, biological/physical parameters, a layered structure of the granule, and mass fractions of acidogens and methanogens. To simplify model calculations, an empirical model incorporating apparent kinetics was also developed, based on the material-balance relationship. Thereafter, four UASB reactors (with effluent recycle; us = 0.5, 1.0, 2.0, and 4.0 m/h) were used to treat an inhibitory substrate phenol (Temp. = 25℃, 30℃, 35℃, and 40℃) and a non-inhibitory substrate sucrose (Temp. = 35℃), respectively, to generate experimental data, including effluent quality, granule characteristics, and flow regimes. In addition, independent batch experiments were conducted to estimate intrinsic and apparent kinetic constants of anaerobic phenol and sucrose degradation, intrinsic kinetic constants of acetate methanogenesis (enrichment culture), and mass fractions of acidogens and methanogens. Finally, the experimental data and operational conditions together with biological/physical parameter values were used to validate the two proposed models.
For the treatment of the inhibitory substrate phenol, the UASB reactors (Temp. = 30℃, 35℃, and 40℃; us = 0.5, 1.0, 2.0, and 4.0 m/h; volumetric loading rate (VLR) = 10.53 kg COD/m3-d) were found very efficient for the removal of COD (i.e., greater than 97.3%). However, when the VLR of the UASB reactor was increased to 13.76 kg COD/m3-d, the residual phenol concentration increased to as high as 452 mg/L, and meanwhile the residual volatile fatty acids (VFAs) concentration was relatively low (82 mg acetate/L), causing that the COD removal efficiency declined abruptly to 76.1%. This implied that the rate-limiting step in the overall phenol removal process was phenol acidogenesis. In contrast, for the treatment of the non-inhibitory substrate sucrose, the COD removal efficiency decreased with increasing VLRs (7.94 – 13.76 kg COD/m3-d), primarily because the accumulation of volatile fatty acids (VFAs = 202 – 1096 mg acetate/L) occurred. This revealed that the rate-limiting step in the overall sucrose removal process was methanogenesis.
The estimated intrinsic kinetic constants kp, k1,p and k2 of anaerobic phenol degradation, phenol acidogenesis and acetate methanogenesis in batch reactors (dispersed sludge) all increased with increasing temperature, but the estimated intrinsic kinetic constants Ks1,p and Ks2 decreased with increasing temperature. The activation energy (Ea) and temperature coefficients estimated from all the kp, k1,p and k2 values (at a temperature range of 25℃ – 40℃) were 3063, 5640, 6505 cal/mole and 1.017, 1.030, 1.042, respectively; the temperature coefficients estimated from all the Ks1,p and Ks2 values (at the same temperature range) were 0.941 and 0.953, respectively. That is, the influencing degree of temperature on methanogens was greater, compared to acidogens. At a mesophilic temperature range (25℃ - 40℃), the Ea and estimated from the specific phenol utilization rates in the UASB reactors (us = 0.5, 1.0, 2.0, and 4.0 m/h) were 778 – 1810 cal/mole and 1.003 – 1.008, respectively, which were much smaller than those estimated from the batch reactors (Ea = 3063 cal/mole, 1.017). This implied that the influencing effect of mesophilic temperature on the phenol degration of biomass granules (microorganisms) was smaller, compared to dispersed sludge in the batch reactors. In addition, the intrinsic kinetic constants kp and Ki,p and the apparent kinetic constants kp' and Ki,p' of anaerobic phenol degradation (35℃) varied slightly, but the apparent kinetic constant Ks,p' was significantly larger than the intrinsic kinetic constant Ks,p. That is, an increase of Ks reflected that mass transfer resistance occurred within the granule. Moreover, the intrinsic kinetic constant ks of anaerobic sucrose degradation was larger than the apparent kinetic constant ks'; while the intrinsic kinetic constant Ks,s was smaller than the apparent kinetic constant Ks,s'. To compare the intrinsic kinetic constants of anaerobic phenol acidogenesis with those of anaerobic sucrose acidogenesis, the intrinsic kinetic constant k1,s was 38-fold intrinsic kinetic constant k1,p, while the intrinsic kinetic constant Ks1,s was 10-fold intrinsic kinetic constant Ks1,p.
The granule diameter measured from both the phenol-fed and sucrose-fed UASB reactors increased with increasing VLR (7.94 – 13.76 kg COD/m3-d); the granule diameter of the former was slightly smaller than that of the latter; and the granule of the former grew more compact. From the observation of the granule by scanning electronic microscopy (SEM), microbial consortia of the granule in the phenol-fed UASB reactor was uniformly distributed. In contrast, microbial consortia of the granule in the sucrose-fed UASB reactor was a layered structure (i.e., acidogens and methanogens grew in the outer and inner layers, respectively). At the VLRs of 7.94 – 13.76 kg COD/m3-d, the estimated mass fractions of methanogens in both the phenol-fed and sucrose-fed UASB reactors (Temp. = 35℃; us = 2.0 m/h) decreased with increasing VLR.
If the UASB reactors were used to treat the inhibitory substrate phenol and non-inhibitory substrate sucrose, the influence of mass transfer resistance on the overall substrate removal rate should not be neglected. In fact, the existance of internal mass transfer resistance in the granule had a strong effect on the overall substrate removal rate, especially for the treatment of the non-inhibitory substrate sucrose. Meanwhile, the effect of the external mass transfer resistance on the overall substrate removal rate in the effluent-recycled UASB reactors could be considered very small. By using the proposed kinetic and empirical models together with biological and physical parameter values, both the phenol and COD removal efficiencies of the UASB reactors were only 4% deviated from the experimental results. Moreover, the relative percentage deviation (RPD) of COD removal efficiencies from kinetic- and empirical- model simulation fell in a small range of 0.47% – 3.78%, implying that the application of the empirical model for function design of UASB reactors should be acceptable in engineering practice. Finally, according to the kinetic-model simulation results for the UASB reactors at the VLRs of 7.94 – 10.53 kg COD/m3-d, the effectiveness factor values (1,s, 1,p)decreased with increasing granule size (dp); with an increase in dp, the declining degree of 1,s was higher than that of 1,p; however, 1,p increased with increasing dp at a high VLR of 13.76 kg COD/m3-d because the apparent reaction rate of the inhibitory substrate phenol in the UASB reactor was higher than the intrinsic reaction rate.
Agrawal, L. K., Harada, H., Okui, H. 1997. Treatment of dilute wastewater in a UASB reactor at moderate temperature: Performance aspects. J. Ferment. Bioengng. 83: 179-184.
Alphenaar, P. A., Pérez, M. C., Lettinga, G. 1993. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules. Appl. Microbiol. Biotechnol. 39: 276-280.
Alphenaar, P. A., Visser, A., Lettinga, G. 1993. The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a hight sulphate content. Biores. Technol. 43: 249-258.
American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF). 1995. Standard methods for the examination of water and wastewater. 19th edition, American Public Health Association, Washington, D. C.
Annachhatre, A. P., Amatya, P. L. 2000. UASB treatment of tapioca starch wastewater. J. Environ. Eng. (ASCE) 126: 1149-1152.
Arrhenius, S. 1889. Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch sauren. Zeitschrift für Physikalische Chemie 4: 226-248.
Bailey, J. E., Ollis, D. F. 1986. Biochemical engineering fundamentals. 2nd edition. McGraw-Hill, New York.
Barbosa, R. A., Sant'Anna Jr, G. L. 1989. Treatment of raw domestic sewage in an UASB reactor. Water Res. 23: 1483-1490.
Bhatia, D., Vieth, W. R., Venkatasubramanian, K. 1985. Steady-state and transient behavior in microbial methanification: I. Experimental results. Biotechnol. Bioeng. 27: 1192-1198.
Bhatti, Z. I., Furukawa, K., Fujita, M. 1993.Treatment performance and microbial structure of a granular consortium handling methanolic waste. J. Ferment. Bioengng. 76: 218-223.
Boardman, G. D., McVeigh, P. J. 1997. Use of UASB technology to treat crab processing wastewaters. J. Environ. Eng. (ASCE) 123: 776-785.
Campos, C. M. M., Anderson, G. K. 1992. The effect of the liquid upflow velocity and substrate concentration on the start-up and steady-state periods of lab-scale UASB reactors. Water Sci. Technol. 25: 41-50.
Chang. Y. J., Nishio, N., Nagai, S. 1995. Characteristics of granular methanogenic sludge grown on phenol synthetic medium and methanogenic fermentation of phenolic wastewater in a UASB reactor. J. Fermen. Bioeng. 79: 348-353.
Chou, H. H., Huang, J. S. 2004. Temperature dependency of granule characteristics and kinetic behavior in UASB reactors. J. Chem. Technol. Biotechnol. 79: 797-808.
Chou, H. H., Huang, J. S. 2004. Role of mass transfer resistance in overall substrate removal rate in upflow anaerobic sludge bed reactors. J. Envir. Eng. (ASCE). (in press)
Christiansen, P., Hollesen, L., Harremoes, P. 1995. Liquid film diffusion on reaction rate in submerged biofilters. Water Res. 29: 947-952.
Denac, M., Miguel, A., Dunn, I. J. 1988. Modeling dynamic experiments on anaerobic degradation of molasses. Biotechnol. Bioengng. 31: 1-10.
Dinsdale, R. M., Hawkes, F. R., Hawkes, D. L. 1997. Comparison of mesophilic and thermophilic upflow anaerobic sludge blanket reactors treating instant coffee production wastewater. Water Res. 31: 163-169.
Dolfing, J. 1985. Kinetics of methane formation by granular sludge at low substrate concentration, The influence of mass transfer limitation. Appl. Microbiol. Biotechnol. 22: 77-81.
Duff, S. J. B., Kenndy, K. J., Brady, A. J. 1995. Treatment of dilute phenol/PCP wastewaters using the upflow anaerobic sludge blanket (UASB) reactor. Water Res. 29: 645-651.
Evans, W. C. 1977. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature. 270: 17-22.
Fang, H. H. P., Chui, H. K., Li, Y. Y. 1994. Microbial structure and activity of UASB granules treating different wastewaters. Water Sci. Technol. 30: 87-96.
Fang, H. H. P., Chui, H. K., Li, Y. Y. 1995a. Effect of degradation kinetics on the microstructure of anaerobic biogranules. Water Sci. Technol. 32: 165-172.
Fang, H. H. P., Li, Y. Y., Chui, H. K. 1995b. UASB treatment of wastewater with concentrated mixed VFAs. J. Environ. Eng. (ASCE) 121: 153-160.
Fang, H. H. P., Li, Y. Y., Chui, H. K. 1995c. Performance and sludge characteristics of UASB process treating propionate-rich wastewater. Water Res. 29: 895-898.
Fang, H. H. P., Chen, T., Li, Y. Y., Chui, H. K. 1996. Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Water Res. 30: 1353-1360.
Fang, H. H. P., Chung, D. W. C. 1999. Anaerobic treatment of proteinaceous wastewater under mesophilic and thermophilic conditions. Water Sci. Technol. 40: 77-84.
Grady, C. P. L. 1990. Biodegradation of toxic organics: Status and potential. J. Envir. Eng. (ASCE) 116: 805-828.
Grady, C. P. L., Daigger, G. T., Kim, H. C. 1999. Biological wastewater treatment. 2nd edition, revised and expended, Marcel Dekker, Inc., New York.
Grotenhuis, J. T. C., Plugge, C. M., Stams, A. J. M., Zehnder, A. J. B. 1991. Role of substrate concentration in particle size distribution of methanogenic granular in UASB reactors. Water Res. 25: 21-27.
Gonzalez-Gil, G., Seghezzo, L., Lettinga, G., Kleerebezem, R. 2001. Kinetics and mass-transfer phenomena in anaerobic granular sludge. Biotechnol. Bioeng. 73: 125-134.
Guiot, S. R., Arcand, Y., Charie, C. 1992. Advantage of fluidization on granule size and activity development in upflow anaerobic sludge bed reactors. Water Sci. Technol. 26: 897-906.
Guiot, S. R., Pauss, A., Costerton, J. W. 1992. A structured model of the anaerobic granule consortium. Water Sci. Technol. 25: 1-10.
Hines, A. L., Maddox, R. N. 1985. Mass transfer fundamentals and applications. Prentice-Hall: New Jersey.
Henze, M., Harremoes, P. 1983. Anaerobic treatment of wastewater in fixed film reactors. Water Sci. Technol. 15: 1-101.
Huang, J. C., Ray, B. T., Huang, Y. J. 1989. Sludge digestion by anaerobic fluidized beds. I. Lab performance data. J. Environ. Eng. (ASCE) 115: 1139-1155.
Huang, J. S., Her, J. J., Jih, C. G. 1998. Kinetics of denitrification and denitratification in anoxic filters. Biotechnol. Bioeng. 59: 52-61.
Huang, J. S., Jih, C. G., Lin, S. D., Ting, W. H. 2003. Process kinetics of UASB reactors treating non-inhibitory substrate. J. Chem. Technol. Biotechnol. 78: 762-772.
IBM corp. 1982. IBM system/360 scientific subroutine package version III: Programmer's manual (360A-CM-03X), 5th edition, IBM Corp., New York.
Jih, C. G., Huang, J. S. 1994. Effect of biofilm thickness distribution on substrate-inhibited kinetics. Water Res. 28: 967-973.
Jih, C. G., Huang, J. S., Huang, S. Y. 2003. Process kinetics of UASB reactors treating inhibitory substrate. Water Envir. Res. 75: 5-14.
Kalyuzhnyi, S. V., Martinez, E. P., Martinez, J. R. 1997. Anaerobic treatment of high-strength cheese-whey wastewaters in laboratory and pilot UASB-reactors. Biores. Technol. 60: 59-65.
Kalyuzhnyi, S. V., Sklyar, V. I., Davlytshina, M. A., Parshina, S. N., Simankova, M. V., Kostrokona, N. A., Nozhevnikova, A. N. 1996. Organic removal and microbiological features of UASB-reactor under various organic loading rates. Biores. Technol. 55: 47-54.
Kato, M. T., Field, J. A., Kleerebezem, R., Lettinga, G. 1994. Treatment of low strength soluble wastewaters in UASB reactors. J. Ferment. Bioengng. 77: 679-686.
Kettunen, R. H., Rintala, J. A. 1997. The effect of low temperature (5 – 29℃) and adaptation on the methanogenic activity of biomass. Appl. Microbiol. Biotechnol. 48: 570-576.
Kettunen, R. H., Rintala, J. A. 1998. Performance of an on-site UASB reactor treating leachate at low temperature. Water Res. 32: 537-546.
Kim, I. S., Tabak, H. H., Young, J. C. 1997. Modeling of the fate and effect of chlorinated phenols in anaerobic treatment processes. Water Sci. Technol. 36: 287-294.
Lai, B., Shieh, W. K. 1997. Substrate inhibition kinetics in a fluidized bioparticle. Chem. Eng. J., 65: 117-121.
Lawrence, A. W., McCarty, P. L. 1969. Kinetics of methane fermentation in anaerobic treatment. J. Water Pollut. Control Fed. 41: Part 2, R1-R17.
Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., Klapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22: 699-734.
Levenspiel, O. 1972. Chemical reaction engineering. 2nd edition, John Wiley, New York.
van Lier, J. B., Martin, L. L. S., Lettinga, G. 1996. Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Water Res. 30: 199-207.
Lin, C. Y., Noike, T., Sato, K., Matsumoto, J. 1987. Temperature characteristics of the methanogenesis process in anaerobic digestion. Water Sci. Technol. 19: 299-310.
Macki, R. I., Bryant, M. P. 1981. Metabolic activity of fatty acidoxidizing bacteria and the contribution of acetate, propinate, butyrate and CO2 to methanogenesis in cattle waste at 40 and 60 C. Appl. Envir. Microbiol. 41: 1363-1373.
MacLeod, F. M., Guiot, S. R., Costerton, J. W. 1990. Layered structure of bacterial aggregate produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56: 1598-1607.
McCarty, P. L. 1964. Anaerobic waste treatment fundamentals–Part II–environment requirements and control. Public Works. 95: 91-94.
Neufeld, R. D., Mack, J. D., Strakey, J. P. 1980. Anaerobic phenol biokinetics. J. Water Pollut. Control Fed. 52: 2367-2377.
Oleszkiewicz, J. A., Romanek, A. 1989. Granulation in anaerobic sludge bed reactors treating food industry wastes. Biological Wastes. 27: 216-235.
Parkin, G. F., Speece, R. E. 1982. Model toxicity in methane fementation systems. J. Envir. Eng. (ASCE) 108: 515-531.
Parkin, G. F., Owen, W. F. 1986. Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Eng. (ASCE) 112: 867-920.
Peng, D. C., Zhang, X. W., Jin, Q. T., Xiang, L. K., Zhang, D. 1994. Effects of the seed sludge on the performance of UASB reactors for treatment of toxic wastewater. J. Chem. Technol. Biotechnol. 60: 171-176.
Perry, R. A., Chilton, C. C. 1973. Chemical engineering handbook. 5th ed., McGraw-Hill, Toronto.
Press, W. H., Flannery, B. P., Tenkolsky, S. A., Vetterling, W. T. 1986. Numerical recipes: The art of scientific computing. Cambridge University Press, London, United Kingdom.
Riera, F. S., Córdoba, P., Siñeriz, F. 1985. Ues of the UASB reactor for the anaerobic treatment of stillage from sugar cane molasses. Biotechnol. Bioeng. 27: 1710-1716.
Rittmann, R. E., McCarty, P. L. 1980. Model of steady-state-biofilm kinetics. Biotechnol. Bioeng. 22: 2343-2357.
Rocheieau, S., Greer, C. W., Lawrence, J. R., Cantin, C., Laramee, L., Guiot, S. R. 1999. Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy. Appl. Envir. Microbiol. 65: 2222-2229.
Saez, P. B., Rittmann, B. E., Zhang, Q. B. 1991. Biodegradation kinetics of a self-inhibitory substrate by stable steady-state biofilms. Proc. 45th Ind. Waste Conf. Purdue Univ. 273-279.
Schmidt, J. E., Ahring, B. K. 1991. Acetate and hydrogen metabolism in intact and disintegrated granules from an acetate-fed, 55℃, UASB reactor. Appl. Microbiol. Biotechnol. 35: 681-685.
Schmidt, J. E., Ahring, B. K. 1993. Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors. Enzyme Microbiol. Technol. 15: 304-310.
Schmidt, J. E., Ahring, B. K. 1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol. 42: 457-462.
Schmidt, J. E., Ahring, B. K. 1996. Granule sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 49: 229-246.
Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., Harada, H. 1999. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65: 1280-1288.
Sherwood, T. K., Pigford, R. L., Wilke, C. R. 1975. Mass transfer. McGraw-Hill, New York.
Shin, H. S., Bae. B. V., Lee, J. J., Park, B. C. 1992. Anaerobic digestion of distillery wastewater in a two-phase UASB system. Water. Sci. Technol. 25: 361-371.
Speece, R. E. 1996. Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, Tennessee.
Sponza, D. T. 2002. Simultaneous granulation, biomass retainment and carbon tetrachloride (CT) removal in an upflow anaerobic sludge blanket (UASB) reactor. Process Biochem. 37: 1091-1101.
Stevens, D. K. 1988. Interaction of mass transfer and inhibition in biofilm. J. Envir. Eng. (ASCE) 114: 1352-1358.
Suidan, M. T. 1986. Performance of deep biofilm reactor. J. Environ. Engng. (ASCE) 112: 78-93.
Suidan, M. T., Najm, I. N., Pfeffer, J. T., Wang, Y. T. 1988. Anaerobic biodegradation of phenol: Inhibition kinetics and system stability. J. Envir. Eng. (ASCE) 114: 1359-1376.
Tartakovsky, B., Guiot, S. R. 1997. Modeling and analysis of layered stationary anaerobic granular biofilms. Biotechnol. Bioeng. 54: 122-130.
Tay, J. H., Yan, Y. G. 1996. Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Water Environ. Res. 68: 1144-1150.
Tay, J. H., He, Y. X., Yan, Y. G. 2001. Improved anaerobic degradation of phenol with supplemental glucose. J. Environ. Engng. (ASCE) 127: 38-45.
Wang, J., Araki, T., Ogawa, T., Matsuoka, M., Fukuda, H. 1999. A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioeng. 62: 402-411.
Westermann, P., Ahring, B. J., Mah, R. A. 1989. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol. 55: 1262-1266.
Wen, T. C., Cheng, S. S., Lay, J. J. 1994. A kinetic model of a recirculated upflow anaerobic sludge blanket treating phenolic wastewater. Water Environ. Res. 66: 794-799.
Williamson, K., McCarty, P. L. 1976. A model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 48: 9-24.
Wu, C. S., Huang, J. S. 1996. Bioparticle characteristics of tapered anaerobic fluidized-bed bioreactors. Water Res. 30 : 233-241.
Wu, C. S., Huang, J. S., Yan, J. L., Jih, C. G. 1998. Consecutive reaction kinetics involving distributed fraction of methanogens in fluidized-bed bioreactors. Biotechnol. Bioeng. 57: 367-379.
Wu, J. H., Liu, W. T., Tseng, I. C., Cheng, S. S. 2001. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology. 147: 373-382.
Wu, M. M., Criddle, C. S., Hickey, R. F. 1995. Mass transfer and temperature effects on substrate utilization in brewery granules. Biotechnol. Bioeng. 46: 465-475.
Wu, M. M., Hickey, R. F. 1997. Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion. J. Envir. Engrg. (ASCE) 123: 244-252.
Wu, W., Hu, J., Gu, X., Zhao, Y., Zhang, H., Gu, G. 1987. Cultivation of anaerobic granular sludge in UASB reactors with anaerobic activated sludge as seed. Water Res. 21: 789-799.
Young, J. C., McCarty, P. L. 1969. The anaerobic filter for waste treatment. J. Water Pollut. Control. Fed. 41: Part 2, R160-R173.
Yu, H. Q., Fang, H. H. P., Tay, J. H. 2001. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere. 44: 31-36.
Zaiat, M., Rodrigues, J. A. D., Foresti, E. 2000. External and internal mass transfer effects in an anaerobic fixed-bed reactor for wastewater treatment. Process Biochem. 35: 943-949.
Zhou, G. M., Fang, H. H.P. 1997. Co-degradation of phenol and m-cresol in a UASB reactor. Biores. Technol. 61: 47-52.
Zhu, J., Hu, J., Gu, X. 1997. The bacterial numeration and an observation of a new syntrophic association for granular sludge. Water Sci. Technol. 36: 133-140.
Zingerman, J. P., Metha, S. C., Salter, J. M., Radebaugh, G. W. 1992. Validation of a computerized image analysis system for particle size determination- pharmaceutical application. Intern'I J. Pharma. 88: 303-312.