| 研究生: |
葉鳴麗 Yeh, Ming-Li |
|---|---|
| 論文名稱: |
以自動機為基礎之批次製程異常狀態管理方法 Automata Based Methods for Abnormal Situation Management in Batch Processes |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 自動機 、批次製程 、失誤診斷 、診斷器 、監督器 、危機應變 |
| 外文關鍵詞: | Automaton, Batch Process, Failure diagnosis, Diagnoser, Supervisor, Emergency response |
| 相關次數: | 點閱:123 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異常狀態管理包含了工廠在可接受的正常區域範圍中操作條件重大偏離之即時辨識與減輕。由於沒有效率的異常狀態管理會造成化學工廠中重大的安全與經濟衝擊,因此本論文針對發展異常狀態管理方法的兩項重要議題進行探討:(1) 批次化學品製程的線上失誤診斷分析與(2)自動化合成批次操作步驟。
為了達成這兩項研究議題,我們首先發展系統化的自動機建模方法來描述批次製程中硬體設備(元件)的狀態轉移行為及其失誤傳播機制。根據批次製程的階層結構,將所有的元件進行結合,可得到批次化學品製程的系統模型。此建模方法已成功地利用多個案例研究完成測試。
為了決定定性和定量的診斷性能指標,我們利用上述所建立的製程系統的自動機模型,來自動建構能夠對製程系統進行線上危害鑑識的診斷器。另外,本研究還進一步開發兩項可提高診斷性能的策略來提高失誤診斷的解析度以精確地分辨失誤來源:(1)設置未裝設於順序功能流程圖中的額外感測器與(2)加入未設定於順序功能流程圖中的額外操作步驟。
有關自動化合成批次操作步驟此研究議題,我們開發系統化的策略來自動合成正常與異常系統條件下的批次製程操作步驟。具體而言,我們首先發展標準型式的規格模式,接著,利用平行組合操作方法將系統模式與規格模式進行結合,以自動合成製程系統的可接受監督器。最後,為了決定可實際執行的最有效的操作步驟,可再利用額外輔助的自動機模式來修飾可接受監督器的操作目標並限制操作動作和操作步驟的數目。
我們以案例研究驗證本研究所提出策略的可行性與正確性。我們發現所提出的策略可以應用於非常複雜的案例,因此,有助於改善實際製程中的異常狀態管理。
Abnormal situation management (ASM) involves timely identification and mitigation of significant departures of the operating conditions in a plant from an acceptable normal region. Ineffective ASM may give rise to detrimental consequences with enormous financial implications. Two important research issues are addressed in this thesis, i.e., (1) online failure diagnosis in batch chemical processes and (2) automatic synthesis of batch operating procedures.
In order to achieve the research objectives in both areas, the state transition behaviors of all hardware items (components) in the given batch process and their failure mechanisms are modeled systematically with automata. The overall system model can be assembled by connecting these automata on the basis of a generic hierarchical structure. This modeling approach has been successfully tested with a large number of examples.
A "diagnoser" can be produced on the basis of the aforementioned system model for the purpose of evaluating diagnostic uncertainty indices. Guided by these indices, two performance enhancement measures can be effectively implemented: (1) installing auxiliary devices which are not included in the piping and instrumentation diagram (P&ID) and (2) executing diagnostic tests which are not specified in the sequential function chart (SFC).
For the second research issue, a systematic strategy is provided in this thesis for synthesizing operating procedures under normal or abnormal system conditions. By following the proposed modeling rules, a set of automata can be constructed in advance to represent the control specifications. An admissible supervisor can then be produced by applying the parallel composition operation with the system and specification models. For the purpose of identifying the most efficient procedures, this admissible supervisor is integrated further with the auxiliary automata for setting the operation target(s) and imposing upper limits on the total numbers of actuator actions.
Extensive case studies are presented in this thesis to demonstrate the feasibility and correctness of all proposed methods. It can be observed that the proposed strategies are effective even for very complex cases and, thus, should be useful for improving ASM in realistic processes.
Blanke, M., Kinnaert, M., Lunze, J. Staroswiecki, M. Diagnosis and Fault-tolerant Control, Springer-Verlag, Berlin, 2003.
Brandin, B. A., Wonham, W. M. Supervisory control of timed discrete-event systems. IEEE Transactions on Automatic Control, 39, 329-342, 1994.
Bullemer, P.T., Nimmo I. Understanding and supporting abnormal situation management in industrial process control environments: a new approach to training. in proceedings of the 1994 IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, NJ: IEEE., 391-396, 1994.
Caccavale, F., Pierri, F., Iamarino, M., Tufano, V. An integrated approach to fault diagnosis for a class of chemical batch processes. Journal of Process Control, 19(5), 827-841, 2009.
Cassandras, C.G., Lafortune, S. Introduction to Discrete Event Systems, Boston: Kluwer Academic Publisher, 1999.
Cerutti, S., Lamperti, G., Scaroni, M., Zanella, M., Zanni, D. A diagnostic environment for automaton networks. Software: Practice and Experience, 37(4), 365-415, 2007.
Chen, C. L., Chen, W. C. Fuzzy controller-design by using neural-network techniques. IEEE Transactions on Fuzzy Systems, 2, 235-244, 1994.
Chang, C.T., Chen, J.Y. Systematic enumeration of fuzzy diagnosis rules for identifying multiple faults in chemical processes. Industrial & Engineering Chemistry Research, 46(11), 3635-3655, 2007.
Chang, C.T., Chen, J.Y. Fault diagnosis with automata generated languages. Computers and Chemical Engineering, 35(2), 329-341, 2011.
Chen, J.Y., Chang, C.T. Development of fault diagnosis strategies based on qualitative predictions of symptom evolution behaviors. Journal of Process Control, 19(5), 842-858, 2009.
Chen, J., Jiang, Y.C. Development of hidden semi-markov models for diagnosis of multiphase batch operation. Chemical Engineering Science, 66(15), 1087-1099, 2011.
Chen, Y.C., Yeh, M.L., Hong, C.L., Chang, C.T. Petri-net based approach to configure online fault diagnosis systems for batch processes. Industrial & Engineering Chemistry Research, 49(9), 4249-4268, 2010.
Chou, H.H., Chang, C.T. Petri-net-based strategy to synthesize the operating procedures for cleaning pipeline networks. Industrial & Engineering Chemistry Research, 44, 114-123, 2005.
Chung, S.L., Lai, Y.H. Process control of brewery plants. Journal of the Chinese Institute of Engineers, 31(1), 127-140, 2008.
Crooks, C. A., Macchietto, S. A. Combined milp and logic-based approach to the synthesis of operating procedures for batch plants. Chemical Engineering Communications, 114, 117-144, 1992.
Dietrich, P., Malik, R., Wonham, W. M., Brandin, B. A. Implementation considerations in supervisory control. Synthesis and Control of Discrete Event Systems, Caillaud, B., Darondeau, P., Lavagno, L., Xie, X., Kluwer Eds., 185-201, 2002.
Falkman, P., Lennartson, B., Tittus, M. Specification of a batch plant using process algebra and petri nets. Control Engineering Practice, 17, 1004-1015, 2009.
Fleming, D.W., Pillai, V.A., Pillai, J.A. S88 implementation guide, McGraw-Hill Inc: New York,1998.
Fravolini, M.L., Campa, G. Design of a neural network adaptive controller via a constned invariant ellipsoids technique rai, IEEE Transactions on Neural Networks, 22, 627-638, 2011.
Fusillo, R.H., Powers, G.J. A synthesis method for chemical plant operating procedures. Computers & Chemical Engineering, 11, 369-382, 1987.
Galán, S., Barton, P.I. Dynamic optimization formulations for operating procedure synthesis. Paper Presented at the Annual Meeting of the American Institute of Chemical Engineers, 1997.
Hamid, M.K. A., Sin, G., Gani, R. Integration of process design and controller design for chemical processes using model-based methodology. Computers & Chemical Engineering, 34, 683-699, 2010.
Hashizume, S., Yajima, T., Ito, T., Onogi, K. Synthesis of operating procedures and procedural controllers for batch processes based on Petri nets. Journal of the Chinese Institute of Chemical Engineers, 35, 363-369, 2004.
Hashizume, S., Yajima, T., Kuwashita, Y., Onogi, K. Integration of fault analysis and interlock controller synthesis for batch processes. Chinese Journal of Chemical Engineering, 16(1), 57-61, 2008.
Hoshi, K., Nagasawa, K., Yamashita, Y., Suzuki, M. Automatic generation of operating procedures for batch production plants by using graph representations. Journal of Chemical Engineering of Japan, 35, 377-383, 2002.
International Electrotechnical Commission (IEC), Preparation of function charts for control systems, CEI/IEC 848: 1988. publication (1991).
Ivanov, V.A., Kafarov, V.V., Perov, V.L., Reznichenko, A.A. On algorithmization of the start-up of chemical productions. Engineering Cybernetics, 18, 104-110, 1980.
Kaspar, M.H., Ray, W.H. Chemometric methods for process monitoring and high-performance controller-design. AICHE Journal, 38, 1593-1608, 1992.
Kinoshita, A., Umeda, T., O’Shima, E. An approach for determination of operational procedure of chemical plants. Proceedings of the International Symposium on Process Systems Engineering, 114-120, 1982.
Kim, J., Kim, J., Moon, I. Error-free scheduling for batch processes using symbolic model verifier. Journal of Loss Prevention in the Process Industries, 22, 367-372, 2009.
Kim, J., Moon, I. Automatic verification of control logics in safety instrumented system design for chemical process industry. Journal of Loss Prevention in the Process Industries, 22, 975-980, 2009.
Kourti, T., Macgregor, J.F. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemometrics and Intelligent Laboratory Systems, 28(1), 3-21, 1995.
Kourti, T., Nomikos, P., Macgregor, J.F. Analysis monitoring and fault-diagnosis of batch processes using multiblock and multiway PLS. Journal of Process Control, 5(4), 277-284, 1995.
Koutsoukos, X.D., Antsaklis, P.J., Stiver, J.A., Lemmon, M.D. Supervisory control of hybrid systems. Proceedings of the IEEE, 88, 1026-1049, 2000.
Lafortune, S., Teneketzis, D. UMDES-LIB, Library of commands for discrete event systems modeled by finite state machines, 2000.
Lai, J.W., Chang, C.T., Hwang, S.H. Petri-net based binary integer programs for automatic synthesis of batch operating procedures. Industrial & Engineering Chemistry Research, 46(9), 2797-2813, 2007.
Lakshmanan, R., & Stephanopoulos, G. Synthesis of operating procedures for complete chemical plants – I. Hierarchical, structured modeling for nonlinear planning. Computers & Chemical Engineering, 12, 985-1002, 1988.
Lee, J.M., Yoo, C.K., Lee, I.B. Fault detection of batch processes using multiway kernel principal component analysis. Computers & Chemical Engineering, 28(9), 1837-1847, 2004.
Liang, K.H., Chang, C.T. A simultaneous optimization approach to generate design specifications and maintenance policies for the multi-layer protective systems in chemical processes. Industrial & Engineering Chemistry Research, 47(15), 5543-5555, 2008.
Li, H.S., Lu, M.L., Naka, Y. A two-tier methodology for synthesis of operating procedures. Computers & Chemical Engineering, 21S, S899, 1997.
Liu, F., Qiu, D., Xing, H., Fan, Z. Decentralized diagnosis of stochastic discrete event systems. IEEE Transactions on Automatic Control, 53(2), 535-546, 2008.
Malik, P., Malik, R. Modular control-loop detection. Proceedings of the 8th International Workshop on Discrete Event Systems, Ann Arbor, Michigan, USA, July 10-12, 2006.
Maurya, M., Rengaswamy, R., Venkatasubramanian, V. Application of signed digraph-based analysis for fault diagnosis chemical process flowsheets. Engineering Applications of Artificial Intelligence, 17(5), 501-518, 2004.
Moon, I., powers, G..J., Burch, J.R., Clarke, E.M. Automatic verification of sequential control systems using temporal logic. Amer. Inst. Chem. Eng. J., 38(1), 67-75, 1992.
Naka, Y., Lu, M.L., Takiyama, H. Operational design for start-up of chemical processes. Computers & Chemical Engineering, 21, 997-1007, 1997.
Nimmo, I. Adequately address abnormal situation operations. Chem. Eng. Prog., 91(9), 36-45, 1995.
Nomikos, P., MacGregor, J.F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375, 1994.
Nomikos, P., MacGregor, J.F. Multivariate SPC charts for monitoring batch processes. Technometrics, 37(1), 41-59, 1995.
Panjapornpon, C., Soroush, M., Seider, W. D. Model-based controller design for unstable, non-minimum-phase, nonlinear processes. Industrial & Engineering Chemistry Research, 45, 2758-2768, 2006.
Patton, R. J. Fault-tolerant control, the 1997 situation. Proceedings of Safeprocess, Hull, UK, 1033-1055, 1997.
Pierri, F., Paviglianiti, G., Caccavale, F., Mattei, M. Observer-based sensor fault detection and isolation for chemical batch reactors. Engineering Applications of Artificial Intelligence, 21(8), 1204-1206, 2008.
Qiu, W.B., Kumar, R. Decentralized failure diagnosis of discrete event systems. IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans, 36(2), 384-395, 2006.
Qiu, W.B., Kumar, R. Distributed diagnosis under bounded-delay communication of immediately forwarded local observations, IEEE Transactions on Systems, Man and Cybernetics – Part A: Systems and Humans, 38 (3) 628-643, 2008.
Ouedraogo, L., Khoumsi, A., Nourelfath, M. A new method for centralised and modular supervisory control of real-time discrete event systems. International Journal of Control, 83, 1-39, 2010.
Ramadge, P.J., Wonham, W.M. Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization, 25, 206-230, 1987.
Ramadge, P.J., Wonham, W.M. The control of discrete event systems. Proceedings of the IEEE, 77, 81-98, 1989.
Rigatos, G.G. Fault detection and isolation based on fuzzy automata. Information Sciences,179(12),1893-1902., 2009.
Rivas, J. R., Rudd, D. F. Synthesis of failure-safe operation. AICHE Journal, 20, 320-325, 1974.
Ruiz, D., Canton, J., Nougues, J.M., Espuna, A., Puigjaner, L. On-line fault diagnosis system support for reactive scheduling in multipurpose batch chemical plants. Computers & Chemical Engineering, 25(4-6), 829-837, 2001a.
Ruiz, D., Nougues, J.M., Calderon, Z., Espuna, A., Puigjaner, L. Neural network based framework for fault diagnosis in batch chemical plants. Computers & Chemical Engineering, 24(2-7), 777-784, 2001b.
Sampath, M., Lafortune, S., Sinnamohideen, K., Teneketzis, D. Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control, 40(9), 1555-1575, 1995.
Sampath, M., Lafortune, S., Teneketzis, D. Active diagnosis of discrete-event systems. IEEE Transactions on Automatic Control, 43(7), 908-929, 1998.
Sampath, M., Sengupta, R., Lafortune, S., Sinamohideen, K., Teneketzis, D. Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology, 4(2), 105-104, 1996.
Sanchez, A., Macchietto, S. Design of procedural controllers for chemical processes. Computers & Chemical Engineering, 19, S381-S386, 1995.
Shaeiwitz, J.A., Lapp, S.A., Powers, G.J.: Fault tree analysis of sequential systems. Ind. Eng. Chem. Process Des. Dev, 16(4), 529–549 (1977)
Shannon, C.E. A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423, 623-656, 1948.
Tan, K.S., Yamashita, Y. Design of a dependable process control system. Proceedings of the 5th International Symposium on Design, Operation and Control of Chemical Processes, 446-453, 2010.
Undey, C., Ertunc, S., Cinar, A. Online batch fed-batch process performance monitoring, quality prediction, and variable contribution analysis for diagnosis. Industrial & Engineering Chemistry Research, 42(20),4645-4658, 2003.
Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S. N. A review of process fault detection and diagnosis, part i: Quantitative model based methods. Computers & Chemical Engineering, 27(3), 293-311, 2003a.
Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N. A review of process fault detection and diagnosis, part ii: Qualitative model and search strategies. Computers & Chemical Engineering, 27(3), 313-326, 2003b.
Venkatasubranmanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K. A review of process fault detection and diagnosis, part iii: Process history based methods. Computers & Chemical Engineering, 27(3), 327-346, 2003c.
Viswanathan, S., Johnsson, C., Venkatasubramanian, V., A¨rzen, K.E. Automating operating procedure synthesis for batch processes: Part I. Knowledge representation and planning framework. Computers and Chemical Engineering, 22(11), 1673-1685, 1998a.
Viswanathan, S., Johnsson, C., Venkatasubramanian, V., A¨rzen, K.E. Automating operating procedure synthesis for batch processes: Part II. Implementation and application. Computers & Chemical Engineering, 22 (11), 1687-1698, 1998b.
Viswanathan, S., Shah, N., Venkatasubramanianian, V. Hybrid framework for hazard identification and assessment in batch processes. AIChE Journal, 48(8), 1765-1774, 2002.
Wang, Y.F., Chou, H.H., Chang, C.T. Generation of batch operating procedures for multiple material-transfer tasks with petri nets. Computers & Chemical Engineering, 29, 1822-1836, 2005.
Wang, Y. F., Wu, J. Y., Chang, C. T., Automatic hazard analysis of batch operations with Petri nets. Reliability Engineering and System Safety, 76, 91-104, 2002.
Wang, W., Lafortune S., Girard, A.R., Lin, F. Optimal sensor activation for diagnosing discrete event systems. Automatica, 46(7), 1165-1175, 2010.
Wonham, W.M. Supervisory control of discrete-event systems: an introduction. Proceedings of the IEEE International Conference on Industrial Technology 2000, Goa, India, 474-479, January 19-22, 2000.
Yamalidou, E.C., Kantor, J.C. Modeling and optimal control of discrete-event chemical processes using petri nets. Computers & Chemical Engineering, 15, 503-519, 1991.
Yamashita, Y. Toward dependable process control systems: integration of fault diagnosis and controller redesign. PSE Asia 2007, Xi’an, 2007.
Yang, H., Li, N., Li, S.Y. A data-driven bilinear predictive controller design based on subspace method. Asian J. Control, 13(2), 345-349, (2011).
Yeh, M.L., & Chang, C.T. An automaton-based approach to evaluate and improve online diagnosis schemes for multi-failure scenarios in batch chemical processes. Chemical Engineering Research and Design, 89: 2652-2666, 2011.
Yeh, M.L., Chang, C.T. An Automata-Based Approach to Synthesize Untimed Operating Procedures in Batch Chemical Processes. The Korean Journal of Chemical Engineering, 29(5): 583-594, 2012.
Zad, S.H., Kwong, R.H., Wonham, W.M. Fault diagnosis in discrete-event systems: Framework and model reduction. IEEE Transactions on Automatic Control, 48(7), 1199-1204, 2003
Zhang, Y., Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Proceedings of Safeprocess, Washington, USA, 265-276, 2003.
Zhang, Z., Wu, C., Zhang, B., Xia, Y., Li, A. Sdg multiple fault diagnosis by real-time inverse inference. Reliability Engineering and System Safety, 87(2), 173-189, 2005.
Zineb, S.A., Maria, D.M., Michal, K. Fault diagnosis for discrete event systems: modelling and verification. Reliability Engineering and System Safety, 95(4), 369-378, 2010.