簡易檢索 / 詳目顯示

研究生: 陳豐昇
Chen, Feng-Seng
論文名稱: 結構損傷部位識別法之研究
A Study on Structural Damage Localization Detection Method
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 81
中文關鍵詞: 可識別性問題振型擴充模式縮減法
外文關鍵詞: model reduction, shape expansion, identifiability problem
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要:
    在損傷偵測的分析過程中,由於實際放置感測器的量測自由度數目與分析模型階數不合。通常的解決方法為藉由模式縮減法,將分析模型階數縮減至與量測自由度數目相同,再以二階段損傷偵測法識別損傷部位與損傷程度。但此作法於第一階段所識別的損傷部位中,包含的參數往往很多,導致容易發生可識別性問題,且亦增加了以最佳化方法估算參數值時的負擔。
    本研究中,以振型擴充為出發點。利用線性擴充法擴充量測振型,再以損傷指標法識別損傷部位,更經由多階段的損傷部位識別來縮小識別損傷的範圍,藉以提高損傷部位識別的解析度;並減少以最佳化方法估算參數值的負擔,進而降低可識別性問題的發生。文中分別以鏈模型及懸臂梁為例,藉由數值模擬的方式驗證此概念的適用性。

    Abstract:
    In the process of the damage detection analysis, most skills are utilized model reduction technique to reduce the order of analytical model as same as the number of measured degree of freedom. Then, the approximate damaged area and degree of damage are located with two-step damage detection method. But the way to locate damaged region is always involved too many parameters. Therefore, it not only raised the probability of identifiability problem but also burdened with the calculation of parameter estimation.
    In this thesis, base on shape-expansion methods to expand shape and locate damage region by damage-index method, and the concept of multiple-stage damage localization is proposed. It’s used to reduce the range of damage detection and increase the resolution of damage localization; also decrease the calculation of parameter estimation and further reduce the probability of identifiability problem. The idea is applied to chain model and cantilever beam in numerical simulation.

    目錄 中文摘要 …………………………………………………………………… I 英文摘要 …………………………………………………………………… II 誌謝 ………………………………………………………………………… III 目錄 ………………………………………………………………………… IV 表目錄 ……………………………………………………………………… VI 圖目錄 ……………………………………………………………………… VII 第一章 緒 論 …………………………………………………………… 1 第一節 引言 ………………………………………………………… 1 第二節 文獻回顧 …………………………………………………… 4 第三節 研究目的與方法 …………………………………………… 8 第四節 論文內容 …………………………………………………… 9 第二章 模式縮減與振型擴充 …………………………………………… 10 第一節 引言 ………………………………………………………… 10 第二節 模式縮減 …………………………………………………… 12 第三節 振型擴充 …………………………………………………… 21 第三章 損傷偵測與損傷部位標定 ……………………………………… 26 第一節 引言 ………………………………………………………… 26 第二節 一般損傷標定法 …………………………………………… 27 第三節 損傷指標法 ………………………………………………… 30 第四章 數值模擬分析 …………………………………………………… 34 第一節 引言 ……………………………………………………… 34 第二節 鏈模型之模擬分析 ……………………………………… 35 第三節 懸臂梁之模擬分析 ……………………………………… 42 第五章 結論 ……………………………………………………………… 44 參考文獻 …………………………………………………………………… 47 附錄 ……………………………………………………………………… 51

    參考文獻

    [1] Avitabile, P.,O´Callahan,J.C., Milani,J.,“Model Correlation and Orthogonality Criteria,”Sixth International Modal Analysis Conference, pp. 1039-1047, 1988.
    [2] Avitabile, P.,O´Callahan,J.C.,Milani,J.,“Comparison of System Characterisitics using Various Model Reduction Techniques,”Seventh International Modal Analysis Conference, pp. 1109-1115, 1989.
    [3] Avitabile, P.,O´Callahan,J.C.,and J.C.,Pan, E.,“Effects of Various Model Reduction Techniques on Computed Response,”Seventh International Modal Analysis Conference, pp. 777-785, 1989.
    [4] Baruh, H. and Ratin, S.,”Damage Detection in Flexible Structures,” Joural of Sound and Vibration, 166(1), pp. 21-30, 1993.
    [5] Berman, A. and Flannely, W.G.,“Theory of Incomplete Models of Dynamic Structures,”AIAA Joural Vol.9(8),August 1971.
    [6] Berman, A.,“System Identification of Structural Dynamic Models - Theoretical and Practical Bounds,”AIAA paper 84-0929,1984.
    [7] Brown T. A Unified Approach to the Identification of Dynamic Behaviour Using the Theory of Vector Spaces ,PhD Thesis ,Bristol University, 1985.
    [8] Berman, A.,“Multiple Acceptable Solutions in Structural Model Improvement,” AIAA Journal, Vol. 33(5), pp. 924-927, 1995.
    [9] Doeling, S. W.,“Minimum-Rank Optimal Update of Elemental Stiffness Parameters for Structural Damage Identification,” AIAA Journal,Vol 34, No. 12, pp. 2615-2621, 1996.
    [10] Doebling, C.R. and M. B. Prime “A Summary Review of Vibration-based Damage Identification Methods”,The Shock and Vibration Digest 30(2), pp.91-105. 1998.
    [11] Fissette, E.,and Ibrahim, S., “Error Location and Updating of Analytical Dynamic Models Using a Force Balance Method,” Proc. 6th Int. Modal Analysis Conf., pp. 1063-1070, 1988.
    [12] Guyan, R. J.,“Reduction of Stiffness and Mass Matrices,” AIAA Journal, Vol. 3(2), pp. 380, 1965.
    [13] Gysin, H., “Comparison of Expansion Method for FE Modeling Error Localization,” Proc. 8th Int. Modal Analysis Conf., 1990.
    [14] Gordis, J. H. “An analysis of the Improved Reduced System (IRS) Model Reduction Procedure,”The International Journal of Analytical and Experimental Modal Analysis, Vol. 9, No. 4, pp.269-285, Oct 1994.
    [15] Hajela, P., and Soeiro, F.J., “Structural Damage Detection Based on Static and Modal Analysis,” AIAA Journal, Vol. 28(6), pp. 1110-1115, 1989.
    [16] Kidder, R.L.,“Reduction of Structural Frequency Equations,” AIAA Journal,Vol 11(6), pp. 892, 1973.
    [17] Kammer, Daniel C., “Test-Analysis-Model Development Using an Exact Modal Reduction,” Journal of Modal Analysis, pp. 174-179, October 1987.
    [18] Kim, H. M.,and Bartkowicz, T. J., “Damage Detection and Health Monitoring of Large Space Structures,” Sound and Vibration, June 1993.
    [19] Lipkins J,and Vandeurzen U. “The Use of Smoothing Techniques for Structural Modification Applications,”12th Internation Modal Analysis Seminar, Leuven, Belgium, 1987.
    [20] Lieven N.A.J.,and Ewins D.J.“Correlation of Modeshapes, the Coordinate Modal Assurance Criterion (COMAC),”Proc. IMAC VI, pp.690, 1988.
    [21] Levine-West, M. B. ,Milman, M.and Kissil, A.,“Mode Shape Expansion Techniquesfor Prediction: Experimental Evaluation, ” AIAA Journal, Vol. 34,No. 4, pp. 821-829, April 1996.
    [22] Miller, C.A.,“Dynamic Reduction of Structural Models,”ASCE Journal of the Structural Division,1980.
    [23] Mazurek, D. F., and DeWolf, J, T.,“Experimental Study of Bridge Monitoring Technique,”Journal of the Structural Engineering, Vol.116,No.9,pp. 2532-2549,1990.
    [24] O´Callahan, J. C.,Avtabile, P. and Riemer, R. ,“System Equivalent Reduction Expansion Process (SEPER),”Seventh International Modal Analysis Conference, Las Vegas, Nevada, pp. 29-37, 1989.
    [25] O´Callahan, J. C.,Avtabile, P., Madden, R.,and Lieu, I.W., “An Efficient Method of Determining Rotational Degrees of Freedom From Analytical and Experimental Modal Data,”Fourth International Modal Analysis Conference, Los Angeles, California, pp. 50-58, Feb. 1986.
    [26] Press W.H., Flannery B.P., and Teukolsky Numerical Recipes– the Art of Scientific Computing, pp. 86-89, 1986.
    [27] Pandey, M. Biswas and M. M. Samman “Damage Detection from Changes in Curvature Mode Shapes,”Joural of Sound and Vibration 45(2), pp.321-332. 1991.
    [28] Pandey, A.K., and Biswas, M.,“Damage Detection in Structures Using Changes in Flexibility,”Journal of Sound Vibration,169,No.1 pp.3-17, 1994.
    [29] Ricles, J.M., and Kosmatka, J.B., “Damage Detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity,” AIAA Journal Vol. 30(9), 1992.
    [30] Stubbs, J.-T.Kim and K.Topole“An Efficient and Robust Algorithm for Damage Localization in Offshore Platforms,”Proceedings of the ASCE Tenth Structures Congress, pp.543-546. 1992.
    [31] Zimmerman, D.C. and Kaouk, M.,“Structural Damage Detection Using a Minimum Rank Update Theory,” Journal of Sound and Vibration and Acoustics, Vol. 116, pp. 222-231, 1994.
    [32] 江達雲、賴文一, “二階段損傷偵法分析法”,中國航空太空學會第三十卷第一期第19-26頁(民國八十七年)。

    下載圖示 校內:立即公開
    校外:2002-07-19公開
    QR CODE