簡易檢索 / 詳目顯示

研究生: 鍾尚恩
Zhong, Shang-En
論文名稱: 退火對於Hf0.5Zr0.5O2元件之鐵電性的影響
Effect of annealing on ferroelectricity of Hf0.5Zr0.5O2 device
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 氧化鉿鋯快速熱退火微波退火高壓退火超臨界處理
外文關鍵詞: HfxZr1-xO, rapid thermal annealing, microwave annealing, high pressure annealing, supercritical fluid treatment
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體科技不斷的推陳出新,鐵電薄膜材料已經被廣泛應用於現今的元件中,而其中以鐵電記憶體(FeRAM)所佔比例為大宗,因此現今被作為一種新興的揮發性記憶體。鐵電記憶體有許多優點,例如較低操作電壓、操作次數增加和讀寫速度快,不過卻無法達到量產的地步,是因為傳統鐵電薄膜材料,如鋯鈦酸鉛(PZT)或鉭酸鍶鉍(SBT)等有機材料無法整合於現今的CMOS技術上,因此近年來選用以二氧化鉿為基底的氧化鉿鋯(HZO)作為新的鐵電薄膜材料選用,其優點不僅具有高介電系數,也可使用原子層沉積系統鍍製高品質的氧化鉿鋯薄膜。
    近來發現氧化鉿鋯在後段製程時相較於傳統鐵電材料來的穩定,因此常作為金屬/鐵電薄膜/金屬(MFM)結構應用於後段製程中,但因為其製程溫度要求400 oC甚至更低,因此對元件製程的熱預算(Thermal budget)掌控需求漸漸上升。有鑒於此,在本論文實驗中會利用快速熱退火、微波退火以及高壓退火與超臨界處理,對氧化鉿鋯薄膜進行不同的熱處理並且比較其特性的變化。
    本論文研究總共分成三個部分:第一個部分為在矽基板上生長鐵電氧化鉿鋯薄膜,接著以不同方式進行熱處理,分別進行快速熱退火、微波退火、高壓退火以及超臨界處理,最後量測其XRD結果,可以發現當快速熱退火和微波退火的條件分別在溫度500 oC以及2400 W時開始有晶相的產生。而在高壓退火以及超臨界處理方面,原本在400 oC下進行熱處理是沒有晶相的產生,但當腔體壓力升至5 atm時,薄膜便開始有了結晶性的產生,因此我們可以增加壓力的條件,去降低整體熱處理製程的額外熱預算。
    第二部分則是對金屬/鐵電薄膜/金屬(MFM)的電容結構進行熱處理後,量測其鐵電特性,可以發現當快速熱退火在300 oC、400 oC以及微波退火在2100 W時,是量測不出極化值的,這是因為沒有鐵電相的產生,而當微波退火在2700W時其極化量大小會大於快速熱退火在500 oC的大小,傳統多半是以快速熱退火對鐵電薄膜進行熱處理的,因此本實驗有加入微波退火這個新選項作為日後可以取代快速熱退火的方法。而在高壓退火以及超臨界處理方面,可以看出隨著壓力的提升,因為內部鐵電相(o-phase)的增加,使得極化量產生上升。
    第三部分則是對金屬/鐵電薄膜/絕緣層/半導體(MFIS)的電容結構進行熱處理,並量測其電容-電壓(C-V)以及漏電流(I-V)曲線,在熱處理方面的參數是跟前面部分使用一樣的實驗參數,可以發現在使用超臨界處理時,其漏電流是有下降的。
    分析以上的結論我們可以得知,在高壓退火以及超臨界處理過後的鐵電薄膜,不僅可以在較低溫情況下成功達到鐵電相的產生,還可以根據壓力的提升,造成內部相比例的改變,進而提升鐵電特性,而且還能使元件漏電流降低,可確認到超臨界處理在本實驗研究中帶來的優勢。
    關鍵詞:氧化鉿鋯;快速熱退火;微波退火;高壓退火;超臨界處理

    The research in this paper is divided into three parts: the first part is the growth of ferroelectric hafnium zirconium oxide thin films on silicon substrates, followed by thermal processing in different ways, such as rapid thermal annealing, microwave annealing, high pressure annealing and supercritical fluid treatment, and finally by measuring the XRD results. when the thremal processing is performed at 400 oC. But when the pressure rises to 5 atm The film begins to have a crystallization. We can increase the pressure conditions to reduce the extra thermal budget of the overall thermal processing.
    The second part is to measure the ferroelectric properties of the metal/ferroelectric film/metal (MFM) capacitor structure after thermal processing. At the temperature of 400 oC and 200 atm, the remnant polarization (Pr) can be measured. It is 29 μC/cm2.In terms of high pressure annealing and supercritical fluid treatment. It can be seen that with the increase of pressure, the amount of polarization increases due to the increase of the internal ferroelectric phase (o-phase).The third part is to measure the capacitance structure of metal/ferroelectric film/interfacial layer/semiconductor (MFIS) after thermal processing, and measure its capacitance-voltage (C-V) and leakage current (I-V) curves. Using the same experimental parameters in the previous section. It can be found that the leakage current decreases when supercritical fluid treatment is used.
    *:The author
    **:The advisor
    Keywords:HfxZr1-xO, rapid thermal annealing, microwave annealing, high pressure annealing, supercritical fluid treatment

    目錄 致謝 I 摘要 II Abstract IV 目錄 XV 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 本論文研究架構 3 參考資料 7 第二章 文獻回顧 9 2.1 鐵電薄膜材料的發展 9 2.2 鐵電薄膜材料的介紹 9 2.2.1 鐵電薄膜材料的結構 9 2.2.2 鐵電薄膜材料的電滯曲線 11 2.2.3 鐵電薄膜材料的開關理論 11 2.2.4 鐵電薄膜材料的電性 12 2.2.5 鐵電薄膜材料的可靠度 13 2.6 半導體薄膜材料介紹 15 2.6.1 氧化鉿鋯薄膜 15 2.6.2 氮化鈦薄膜 15 2.7 金屬-半導體接面理論 16 2.7.1 蕭特基接觸理論 16 2.8 超臨界處理 17 2.9 X光繞射原理 18 參考資料 26 第三章 實驗製作流程及量測儀器 32 3.1 製程機台 32 3.1.1 電漿增強式原子層沉積系統 32 3.1.2 快速熱退火系統 32 3.1.3 微波退火系統 33 3.1.4 高壓熱退火系統 34 3.1.5 超臨界處理系統 35 3.2 量測儀器介紹 35 3.2.1 X光繞射分析儀 35 3.2.3量測系統 36 3.3 元件製作流程 36 3.3.1 金屬/鐵電薄膜/金屬(MFM)結構 36 3.3.2 金屬/鐵電薄膜/絕緣層/半導體(MFIS)結構 37 參考資料 47 第四章 實驗結果與討論 49 4.1 氧化鉿鋯薄膜結晶之量測分析 49 4.1.1氧化鉿鋯薄膜經由快速熱退火之結晶分析 49 4.1.2氧化鉿鋯薄膜經由微波退火之結晶分析 49 4.1.3氧化鉿鋯薄膜經由高壓退火及超臨界處理之結晶分析 50 4.2金屬/鐵電薄膜/金屬(MFM)之量測分析 51 4.2.1各種不同熱處理情況下的極化-電場(P-E)量測 51 4.3金屬/鐵電薄膜/絕緣層/半導體(MFIS)之量測分析 53 4.3.1各種不同熱處理情況下的電容-電壓(C-V)轉換特性曲線 53 4.3.2各種不同熱處理情況下的漏電流(I-V)分析 54 參考資料 66 第五章 結論與未來展望 68 5.1 結論 68 5.2 未來展望 68   表目錄 表1.1 鈣鈦礦鐵電材料與氧化鉿鋯薄膜材料的比較 4 表1.2 不同機台鍍製的氧化鉿鋯的鐵電極化特性比較 4 表4.1 不同壓力變化下氧化鉿鋯內部相比例量測結果 55   圖目錄 圖1.1 摩爾定律示意圖 5 圖1.2 常見記憶體示意圖 5 圖1.3 利用高壓退火以及超臨界處理改善薄膜內部缺陷的機制 6 圖2.1 鐵電薄膜材料內部極化示意圖 (a)未外加電場 (b)外加電場 19 圖2.2 氧化鉿鋯居禮溫度示意圖 19 圖2.3 鐵電薄膜材料的P-E曲線圖 20 圖2.4 邏輯狀態概念的P-E曲線圖 20 圖2.5 TiN的晶體結構(綠色圓為Ti,紅色圓為N) 21 圖2.6 TiN的相圖 21 圖2.7 當qϕm>qϕs,金屬與n型半導體之能帶示意圖 22 圖2.8 熱離子放射 23 圖2.9 熱游離場放射 23 圖2.10 場放射 23 圖2.11 載子在空乏區和中性區產生與復合 24 圖2.12 氮氣三相圖 24 圖2.13 布拉格方程式相關參數與作用示意圖 25 圖3.1 電漿增強式原子層沉積系統示意圖 39 圖3.2 電漿增強式原子層沉積系統反應循環的流程圖 39 圖3.3 快速熱退火系統示意圖 40 圖3.4 微波(Microwave)的波長示意圖 40 圖3.5 兩種不同退火方式比較示意圖 41 圖3.6 微波退火系統示意圖 42 圖3.7 高壓熱退火系統示意圖 42 圖3.8 壓力與溫度的上升曲線示意圖 43 圖3.9 超臨界處理系統示意圖 44 圖3.10 X光繞射分析儀示意圖 44 圖3.11 量測設備系統全景圖 45 圖3.12 金屬/鐵電薄膜/金屬(MFM)製作流程圖 46 圖3.13 金屬/鐵電薄膜/絕緣層/半導體(MFIS)製作流程圖 47 圖4.1 氧化鉿鋯薄膜經由RTA處理之XRD圖 56 圖4.2 氧化鉿鋯薄膜經由MWA處理之XRD圖 56 圖4.3 氧化鉿鋯薄膜經由HPA處理之XRD圖 57 圖4.4 氧化鉿鋯薄膜經由SCF處理之XRD圖 57 圖4.5 在5 atm環境下處理之氧化鉿鋯薄膜XRD fitting圖 58 圖4.6 在50 atm環境下處理之氧化鉿鋯薄膜XRD fitting圖 58 圖4.7 在100 atm環境下處理之氧化鉿鋯薄膜XRD fitting圖 59 圖4.8 在150 atm環境下處理之氧化鉿鋯薄膜XRD fitting圖 59 圖4.9 在200 atm環境下處理之氧化鉿鋯薄膜XRD fitting圖 60 圖4.10 MFM結構經快速熱退火處理之P-E圖 60 圖4.11 MFM結構經微波退火處理之P-E圖 61 圖4.12 MFM結構經高壓退火以及超臨界處理之P-E圖 61 圖4.13 MFIS結構經快速熱退火處理之C-V圖 62 圖4.14 MFIS結構經微波退火處理之C-V圖 62 圖4.15 MFIS結構經高壓退火和超臨界處理之C-V圖 63 圖4.16 MFIS結構經快速熱退火處理之I-V圖 63 圖4.17 MFIS結構經微波退火處理之I-V圖 64 圖4.18 MFIS結構經高壓退火處理之I-V圖 64 圖4.19 MFIS結構經超臨界處理之I-V圖 65 圖4.20 未經過熱處理、快速熱退火和超臨界處理之I-V比較圖 65

    [1] https://en.wikipedia.org/wiki/Moore%27s_law
    [2] A. Serb, A. Khiat, and T. Prodromakis, “Practical demonstration of a RRAM memory fuse.” INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS., vol. 49(8), pp. 2363-2372, 2021.
    [3] Q. Wang, G. Niu, R. Luo, W. C. Fang, R. B. Wang, Y. K. Xu, Z. T. Song, W. Ren, and S. N. Song, “PCRAM electronic synapse measurements based on pulse programming engineering,” MICROELECTRONIC ENGINEERING., vol. 258, pp. 111773, 2022.
    [4] Y. Seo, and K. W. Kwon, “Area-optimized design of SOT-MRAM,” IEICE ELECTRONICS EXPRESS., vol. 17(21), pp. 20200314, 2020.
    [5] H. Toyoshima, and H. Kobatake, “Features and applications of FeRAM,” NEC RESEARCH & DEVELOPMENT, vol. 40(2), pp. 206-209, 1999.
    [6] J. Okuno, T. Kunihiro, K. Konishi, M. Materano, T. Ali, K. Kuehnel, K. Seidel, T. Mikolajick, U. Schroeder, and M. Tsukamoto, “1T1C FeRAM Memory Array Based on Ferroelectric HZO With Capacitor Under Bitline,” IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, vol 10, pp. 29-34, 2022.
    [7] T. Francois, J. Coignus, A. Makosiej, B. Giraud, C. Carabasse,J. Barbot, S. Martin, N. Castellani,T. Magis, and H. Grampeix, “High-Performance Operation and Solder Reflow Compatibility in BEOL-Integrated 16-Kb HfO2:Si-Based 1T-1C FeRAM Arrays,” IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022.
    [8] M. Sheeraz, B. T. Nguyen, H. S. Han, J. S. Bae, S. Cho, T. H. Kim, C. W. Ahn, and I. W. Kim, “Influence of post-annealing on Mn-doped (K0.5Na0.5)NbO3 thin films,” JOURNAL OF THE KOREAN PHYSICAL SOCIETY, vol 80(7), pp. 628-633, 2022.
    [9] T. Parida, A. Karati, S. Mishra, K. Parthiban, K. Parthiban, and B. S. Myrty,, “Low temperature synthesis of multicomponent perovskite by mechanochemical route,” CERAMICS INTERNATIONAL, vol.48(5), pp. 6385-6392, 2022.
    [10] H. Y. Chen, H. Luo, X. Yuan, and D. Zhang, “Constructing a correlation between ferroelectricity and grain sizes in Hf0.5Zr0.5O2 ferroelectric thin films,” vol 24(9), pp. 1731-1737, 2022.
    [11] X. Z. Zhang, M. Takahashi, K. Takeuchi, and S. Sakai, “64 kbit Ferroelectric-Gate-Transistor-Integrated NAND Flash Memory with 7.5 V Program and Long Data Retention,” JAPANESE JOURNAL OF APPLIED PHYSICS, vol 51, no. 4, pp. 04DD01, 2012.
    [12] J. F. Scott, Ferroelectric Memories, Berlin/Heidelberg/New York, Springer (2000).
    [13] J. Mueller, P. Polakowski, S. Mueller, and T. Mueller, “Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects,” ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, vol 4, no. 5, pp. N30-N35, 2015.
    [14] E. O'Connor, M. Halter, F. Eltes, M. Sousa, A. Kellock, and S. Abel, J. Fompeyrine, “Stabilization of ferroelectric HfxZr1-xO2 films using a millisecond flash lamp annealing technique,” APL MATERIALS, vol 6, no. 12, pp. 121103, 2019.
    [15] Y. Kim, J. Woo, S. Im, Y. Lee, J. H. Kim, J. P. Im, D. Suh, S. M. Yang, S. M. Yoon, and S. E. Moon, “Optimized annealing conditions to enhance stability of polarization in sputtered HfZrOx layers for non-volatile memory applications,” CURRENT APPLIED PHYSICS, vol. 20, no. 12, pp. 1441-1446, 2020

    [1] H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. Böttger, and R Waser. “Current status and challenges of ferroelectric memory devices”. Microel. Engineer, pp. 296-304,2005
    [2] S. J. Kim, J. Mohan, C. D. Young, L. colombo, J. Kim, S. R. Summerfelt, and T. San, “Ferroelectric TiN/Hf0.5Zr0.5O2/TiN Capacitors with Low-Voltage Operation and High Reliability for Next-Generation FRAM Applications,” IEEE, , pp. 1-4, 2018.
    [3] Ferroelectric HfO2-based materials for next-generation ferroelectric memories
    [4] J. Shi, and A. H. Akbarzadeh, “3D Hierarchical lattice ferroelectric metamaterials,” INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, vol. 149, pp. 103247, 2020.
    [5] A. Sutka, K. Malnieks, L. Lapcinskis, M. Timusk, K. Pudzs, and M. Rutkis, “Matching the Directions of Electric Fields from Triboelectric and Ferroelectric Charges in Nanogenerator Devices for Boosted Performance,” ISCIENCE, vol. 23(4), pp. 101011, 2020.
    [6] A. Onodera, and M. Takesada, “Ferroelectricity in Simple Binary Crystals,” CRYSTALS, vol. 7(8), pp. 232, 2017.
    [7] L. Y. Liang, X. L. Kang, and Y. H. Sang, H. Liu, “One-Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications,” ADVANCED SCIENCE, vol. 3(7), pp. 1500358, 2016.
    [8] S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S. L. Hsu, J. Xiao, H. G. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C. H. Hsu, A. J. Tan, L. C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. M. Hu, R. Proksch, R. Ramesh, J. Ciston, and S. Salahuddin, “Enhanced ferroelectricity in ultrathin films grown directly on silicon,” NATURE, vol. 580(7804). pp. 478, 2020.
    [9] G. W. Dietz, M. Schumacher, and R. Waser, “Leakage current in Ba0.7Sr0.3TiO3 thin films for ultrahigh-dentisy dynamic random access memories,” J. Appl. Phys., vol. 82, no. 5, pp. 2359–2361, 1997.
    [10] P. Dangm Z. X. Zhang, J. Casamento, X. Li, J. Singhal, D. G. Schlom, D. C. Ralph, H. G. Xing, and D. Jena, “Materials Relevant to Realizing a Field-Effect Transistor Based on Spin-Orbit Torques,” IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, vol. 5, no. 2 pp. 158-165, 2019.
    [11] Y. W. Cai, Q. Z. Zhang, Z. H. Zhang, G. B. Xu, Z. H. Wu, J. Gu, J. J. Li, J. J. Xiang, and H. X. Yin, “Influence of Applied Stress on the Ferroelectricity of Thin Zr-Doped HfO2 Films,” APPLIED SCIENCES-BASEL, vol. 11, no. 9, pp. 4295, 2021.
    [12] M. V. Silibin, J. Belovickis, S. Svirskas, M. Ivanov, J. Banys, A. V. Solnyshkin, S. A. Gavrilov, O. V. Varenyk, A. S. Pusenkova, N. Morozovsky, V. V. Shvartsman, A. N. Morozovska, “Polarization reversal in organic-inorganic ferroelectric composites: Modeling and experiment,” APPLIED PHYSICS LETTERS, vol. 107, no. 14, pp. 142907, 2015.
    [13] F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, R. Nouar, A. Sarkissian, C. Gomez-Yanez, M. A. Gauthier, and A. Ruediger, “Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt structure,” APPLIED PHYSICS LETTERS, vol. 110, no. 9, pp. 093106, 2017.
    [14] H. Hu, and S. B. Ktupanidhi, “Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin film,” J. Mater. Res., vol. 9, no. 6, 1994.
    [15] J. F. Scott, C. A. Araujo, B. M. Melnick, and L. D. McMillan, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., vol. 70, no. 1, pp. 382-388, 1991.
    [16] C. Sudhama, A. C. Campbcll, P. D. Maniar, R. E. Joncs, R. Moazzami, and C. J. Mogab, “A model for electrical conduction in metal-ferroelectric-metal thin film capacitor,” J. Appl. Phys., vol. 75, no. 2, pp. 1014–1022, 1994.
    [17] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. Do Kim, S. D. Hyun, and C. S. Hwang, “A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement,” NANOSCALE, vol. 8, no. 3, pp. 1383-1389, 2016.
    [18] N. Inoue and Y. Hayashi, “Effect of imprint on operation and reliability of ferroelectric random access memory (FeRAM),” IEEE Transactions on Electron Devices, vol. 48, pp. 2266-2272, 2001.
    [19] T. P. Ma and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive,” IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, 2002.
    [20] H. J. Kim, Y. an, Y. C. Jung, J. Mohan, J. G. Yoo, Y. I. Kim, H. Hernandez-Arriaga, H. S. Kim, J. Kim, S. J. Kim, “Low-Thermal-Budget Fluorite-Structure Ferroelectrics for Future Electronic Device Applications,” PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, vol. 15, no. 5, pp. 2100028, 2021.
    [21] T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Appl. Phys. Lett., vol. 99, no. 10, 2011.
    [22] M. H. Park et al., “Ferroelectricity and antiferroelectricity of doped thin HfO2-based films,” Adv. Mater., vol. 27, no. 11, pp. 1811–1831, 2015.
    [23] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, “Review and perspective on ferroelectric HfO2-based thin films for memory applications,” MRS Commun., vol. 8, no. 3, pp. 795–808, 2018.
    [24] Z. Fan, J. Chen, and J. Wang, “Ferroelectric HfO2-based materials for next-generation ferroelectric memories,” J. Adv. Dielectr., vol. 6, no. 2, 2016.
    [25] M. H. Park, C. C. Chung, T. Schenk, C. Richter, K. Opsomer, C. Detavernier, C. Adelmann, J. L. Jones, T. Mikolajick, and U. Schroeder, “Effect of Annealing Ferroelectric HfO2 Thin Films: In Situ, High Temperature X-Ray Diffraction,” ADVANCED ELECTRONIC MATERIALS, vol. 4, no. 7, 2018.
    [26] B. Y. Kim, B. S. Kim, S. D. Hyun, H. H. Kim, Y. B. Lee, H.W. Park, M. H. Park, and C. S. Hwang, “Study of ferroelectric characteristics of Hf0.5Zr0.5O2 thin films grown on sputtered or atomic-layer-deposited TiN bottom electrodes,” APPLIED PHYSICS LETTERS, vol. 117, no. 2, 2020.
    [27] T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Nagata, and A. Ogura, “Ferroelectricity of HfxZr1-xO2 thin films fabricated by 300 degrees C low temperature process with plasma-enhanced atomic layer deposition,” MICROELECTRONIC ENGINEERING, vol. 215, 2019.
    [28] J. Mueller, T. S. Boscke, U. Schroeder, S. Mueller, D. Braeuhaus, U. Boettger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” NANO LETTERS, vol. 12, no. 8, pp. 4318-4323, 2012.
    [29] D. Martin, J. Muller, T. Schenk, T. M. Arruda, A. Kumar, E. Strelcov, E. Yurchuk, S. Muller, D. Pohl, U. Schroder, S. V. Kalinin, and T. Mikolajick, “Ferroelectricity in Si-Doped HfO2 Revealed: A Binary Lead-Free Ferroelectric,” Adv. Mater., vol. 26, no. 48, pp. 8198–8202, 2014.
    [30] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films,” vol. 22, no. 11, pp. 2412–2417, 2012.
    [31] M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, “Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature,” Appl. Phys. Lett., vol. 102, no. 24, 2013.
    [32] S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, and T. Mikolajick, “Ferroelectricity in Gd-doped HfO2 thin films,” ECS J. Solid State Sci. Technol., vol. 1, no. 6, pp. N123–N126, 2012.
    [33] U. Schroeder, C. Richter, M. H. Park, T. Schenk, M. Pesic, M. Hoffmann, F. P. G. fengler, D. Pohl, B. Rellinghaus, C. Z. Zhou, C. C. Chung, J. L. Jones, and T. Mikolajick, “Lanthanum-Doped Hafnium Oxide: A Robust Ferroelectric Material,” Inorganic Chem., vol. 57, no. 5, pp. 2752–2765, 2018.
    [34] D. Das, V. Gaddam, and S. Jeon, “Demonstration of high ferroelectricity (Pr ~ 29 μ C/cm2) in Zr rich HfxZr1−xO2 films,” IEEE Electron Device Lett., vol. 41, no. 1, pp. 34–37, 2020.
    [35] S. Abdulazhanov, M. Lederer, D. Lehninger, T. Ali, J. Emara, R. Olivo, and T. Kampfe, “Influence of antiferroelectric-like behavior on tuning properties of ferroelectric HZO-based varactors,” MRS ADVANCES, vol. 6, no. 21, pp. 530-534, 2021.
    [36] S. J. Kim, D. Narayan, J. G. Lee, J. Mohan, J. S. Lee, L. Lee, H. S. Kim, Y. C. Byun, A. T. Lucero, C. D. Young, S. R. Summerfelt, T. San, L. Colombo, and J. Kim, “Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2 capacitors due to stress-induced crystallization at low budget,” Appl. Phys. Lett., vol. 111, no. 24, pp. 242901, 2017.
    [37] S. M. Sze, “Semiconductor device physics and technology 2nd edition,” Wiley, chap. 7.1, 2001.
    [38] Neamen, “Semiconductor Photonics Principles and Practices,” 2003.
    [39] 劉長宏,應用超臨界二氧化碳電鍍碲化鉍熱電薄膜之研究,碩士論文,國立中正大學化學工程研究所,嘉義,2008
    [40] K. C. Chang, J. H. Chen, T. M. Tsai, T. C. Chang,S. Y. Huang, R. Zhang, K. H. Chen, Y. E. Syu, G. W. Chang, T. J. Chu, G. R. Liu, Y. T. Su, M. C. Chen, J. H. Pan, K. H. Liao, Y. H. Tai, T. F. Young, S. M. Sze, C, F, Ai, M. C. Wang, J. W. Huang, “Improvement mechanism of resistance random access memory with supercritical CO2 fluid treatment,” JOURNAL OF SUPERCRITICAL FLUIDS, vol. 85, pp. 183-189, 2014.
    [41] B. Pivac, K. Furic, and D. Desnica, “Raman line profile in polycrystalline silicon,” J. Appl. Phys., vol. 86, pp. 4383, 1999.
    [42] S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, “Structural and electrical properties of polycrystalline silicon produced by low-temperature Ni silicide mediated crystallization of the amorphous phase,” J. Appl. Phys., vol. 87, pp. 609, 2000.
    [43] J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, M. Materano, T. Ali, M. Lederer, K. Kuehnel, K. Seidel, U. Schroeder, T. Mikolajick, M. Tsukamoto, and T. Umebayashi, “High-Endurance and Low-Voltage operation of 1T1C FeRAM Arrays for Nonvolatile Memory Application,”IEEE, 2021.

    [1] 台灣儀器科技研究中心-國家實驗研究院整理, https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/196/01960710.pdf
    [2] Y. J. Ji, K. S. Kim, K. H. Kim, J. Y. Byun, and G. Y. Yeom, “A Brief Review of Plasma Enhanced Atomic Layer Deposition of Si3N4,” APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, vol. 28, no 5, pp. 142-147, 2019.
    [3] Y. J. Lee, Y. L. Lu, F. K. Hsueh, K. C. Huang, C. C. Wan, T. Y. Cheng, M. H. Han, J. M. Kowalski, J. E. Kowalski, D. Heh, H. T. Chuang, Y. Li, T. S. Chao, C. Y. Wu, and F. L. Yang, “3D 65nm CMOS with 320°C microwave dopant activation,” IEEE, 2009.
    [4] A. Bhaskar, T. H. Chang, H. Y. Chang, and S. Y. Cheng, “Low-temperature crystallization of sol-gel-derived lead zirconate titanate thin films using 2.45 GHz microwaves,” THIN SOLID FILMS, vol. 515, no 5, pp. 2891-2896, 2007.
    [5] S. K. Cho, and W. J. Cho, “Microwave Assisted Calcination for Electrospun IGZO Nanofibers for High Performance Field-Effect-Transistors,” RSC ADVANCES, vol. 10, no 63, pp. 38351-38356, 2021.
    [6] K. Hirukawa, K. Sumida, H. Sakurai, H. Fujikura, M. Horita, Y. Otoki, K. Sierakowski, M. Bockowski, T. Kachi, and J. Suda, “Isochronal annealing study of Mg-implanted p-type GaN activated by ultra-high-pressure annealing,” APPLIED PHYSICS EXPRESS, vol. 14, no 5, pp. 056501, 2021.
    [7] Y. J. Kim, S. M. Kim, S. Heo, H. Lee, H. I. Lee, K. E. Chang, and B. H. Lee, “High-pressure oxygen annealing of Al2O3 passivation layer for performance enhancement of graphene field-effect transistors,” NANOTECHNOLOGY, vol. 29, no 5, pp. 055202, 2018. 

    [1] M. J. Tsai, P. J. Chen, D. B. Ruan, F. J. Hou, P. Y. Peng, L. G. Chen, and Y. C. Wu, “Investigation of 5-nm-Thick Hf0.5Zr0.5O2 Ferroelectric FinFET Dimensions for Sub-60-mV/Decade Subthreshold Slope,” IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, vol. 7, no. 1, pp. 1033-1037, 2019.
    [2] V. Gaddam, D. Das, and S. Jeon, “Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 67, no. 2, pp. 745-750, 2020.
    [3] D. Wang, Y. Zhang, J. L. Wang, C. L. Luo, M. Li, W. T. Shuai, R. Q. Tao, Z. Fan, D. Y. Chem, M. Zeng, J. Y. Y. Dai, X. B. B. Lu, and J. M. Liu, “Enhanced ferroelectric polarization with less wake-up effect and improved endurance of Hf0.5Zr0.5O2 thin films by implementing W electrode,” JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, vol. 104, pp. 1-7, 2022.
    [4] Z. M. Zou, G. Tian, D. wang, Y. Zhang, J. L. Wang, Y. S. Li, R. Q. Tao, Z. Fan, D. Y. Chen, M. Zeng, X. S. Gao, J. Y. Dai, X. B. Lu, and J. M. Liu, “Enhancement of ferroelectricity and homogeneity of orthorhombic phase in Hf0.5Zr0.5O2 thin films,” NANOTECHNOLOGY, vol. 32, no. 33, pp. 335704, 2021.
    [5] S. J. Kim, D. Narayan, J. G. Lee, J. Mohan, J. S. Lee, L. Lee, H. S. Kim, Y. C. Byun, A. T. Lucero, C. D. Young, S. R. Summerfelt, T. San, L. Colombo, and J. Kim, “Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low budget,” Appl. Phys. Lett., vol. 111, no. 24, pp. 242901, 2017.
    [6] A. Kashir, H. Kim, S. OH, and H. Hwang, “Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Film through Bulk and Interface Engineering,” ACS APPLIED ELECTRONIC MATERIALS, vol. 3, no.2, pp. 629-638, 2021.
    [7] T. Kim, and S. Jeon, “Pulse Switching Study on the HfZrO Ferroelectric Films With High Pressure Annealing,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 65, no. 5, pp. 1771-1773, 2018.
    [8] C. S. Zhao, H. Batiz, B. Yaser, H. Kim, W. B. Ji, M. C. Scott, D. C. Chrzan. and A. Javey, “Tellurium Single-Crystal Arrays by Low-Temperature Evaporation and Crystallization,” ADVANCED MATERIALS, vol. 33, no. 37, pp. 2100860, 2021.
    [9] M. H. Tang, Y. C. Zhou, X. J. Zheng, Z. Yan, C. P. Cheng, Z. Ye, and Z. S. Hu, “Characterization of ultra-thin Y2O3 films as insulator of MFISFET structure,” TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, vol. 16, pp. S63-S66, 2006.
    [10] H. Dedong, K. Jinfeng, and H. Ruqi, “Electrical and Reliability Characteristics of High-Κ HfO2 Gate Dielectrics”.
    [11] S. Oh, H. Kim, A. Kashir, and H.Hwang, “Effect of dead layers on the ferroelectric property of ultrathin HfZrOx film,” APPLIED PHYSICS LETTERS, vol. 117, no 25, pp. 252906, 2021.
    [12] B. Buyantogtokh, V. Gaddam, and S. Jeon, “ Effect of high pressure anneal on switching dynamics of ferroelectric hafnium zirconium oxide capacitors,” JOURNAL OF APPLIED PHYSICS, vol. 129, no 24, pp. 244106, 2021.

    下載圖示 校內:2025-08-29公開
    校外:2025-08-29公開
    QR CODE