| 研究生: |
蔡承翰 Tsai, Cheng-Han |
|---|---|
| 論文名稱: |
水平對臥式維勒米爾式冷凍機之製作與實驗 Manufacturing and Experiments of a Flat-Twin Vuilleumier Refrigerator |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 維勒米爾 、水平對臥 、凸輪 、震動 、孔隙率 |
| 外文關鍵詞: | Vuilleumier, Flat-Twin, Cam-drive shaft, vibration, porosity |
| 相關次數: | 點閱:26 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討了水平對臥式雙製冷頭維勒米爾冷凍機是否能有效利用其特性,在馬達帶動下,左右兩支移氣器產生的側向力達到平衡,以期減少機器運行中必然造成的震動;以及其多出一倍的製冷面積是否會增加其製冷量。本研究以簡單的凸輪機械設計自轉軸來減少連桿動件運行時的磨損能量,這也是選用維勒米爾冷凍機作為研究載體的原因之一,因為其構造簡單,每個壓縮室與膨脹室之間僅需要一個移氣器作為滑動件便可達到製冷效果,因此相比於一般史特靈冷凍機所需的馬達輸入功較小。
本研究以實驗室原有的維勒米爾冷凍機為基礎,設計了一台水平對臥式維勒米爾冷凍機,並使用加速規測量兩者在運作震動下的加速度,並以此作為比較依據。同時,測量其製冷溫度並計算製冷量。在加熱溫度1100K、轉速600rpm、填充氦氣壓力14bar的情況下,水平對臥式維勒米爾冷凍機減少了55%的水平震動造成的加速度。後續改用孔隙率梯度的再生器來達到236.74K的製冷溫度。
This study investigates whether the Flat-Twin Vuilleumier refrigerator with dual refrigerant heads can effectively utilize its characteristics to balance the lateral forces generated by the two displacers driven by the motor, thereby reducing the inevitable vibrations during machine operation. It also examines whether its doubled refrigerant area can increase its cooling capacity. The study employs a simple cam mechanical design for the rotating shaft to reduce the wear energy of the moving linkages, which is one of the reasons for choosing the Vuilleumier refrigerator as the research vehicle. Its simple structure requires only one displacer as a sliding component between each compression and expansion chamber to achieve the cooling effect, resulting in lower motor input power compared to a typical Stirling cryocooler.
Based on an existing laboratory Vuilleumier refrigerator, this study designed a Flat-Twin Vuilleumier refrigerator and used accelerometers to measure the acceleration under operational vibrations as a basis for comparison. Simultaneously, the cooling temperature and cooling capacity were measured. Under conditions of a heating temperature of 1100K, a speed of 600 rpm, and a helium gas pressure of 14 bar, the Flat-Twin Vuilleumier refrigerator reduced the acceleration caused by horizontal vibrations by 55%. Subsequently, a regenerator with a porosity gradient was used to achieve a cooling temperature of 236.74K.
[1] C. H. Cheng, J. H. Feng, and J. S. Huang, "Development of a Vuilleumier refrigerator with crank drive mechanism based on experimental and numerical study," International Journal of Refrigeration, Vol. 129, pp. 204-214, 2021.
[2] 謝詠筌, "再生室孔隙率梯度對維勒米爾式冷凍機之效能影響, " 國立成功大學航空太空工程學系碩士論文, 2022.
[3] S. K. Garg, B. Premachandran, M. Singh, S. Sachdev and M. Sadana, "Effect of Porosity of the regenerator on the performance of a miniature Stirling cryocooler," Thermal Science and Engineering Progress, Vol. 15, 100440, 2020.
[4] M. A. Abolghasemi, H. Rana, R. Stone, M. Dadd, P. Bailey and K. Liang, ''Coaxial Stirling pulse tube cryocooler with active displacer,'' Cryogenics, Vol. 111, 103143, 2020.
[5] Y. Wang, X. Wang, W. Dai and E. Luo, ''A cryogen-free Vuilleumier type pulse tube cryocooler operating below 10 K,'' Cryogenics, Vol. 90, pp. 1-6, 2018.
[6] T. Guo, T. Jiang, P. Zou, B. Luo, P. Hofbauer, J. Liu and Y. Huang, ''Analytical model for Vuilleumier cycle,'' International Journal of Refrigeration, Vol. 113, pp. 126-135, 2020.
[7] G. Dogkas, P. Bitsikas, D. Tertipis and E. Rogdakis, ''Vuilleumier machine speed-effect investigation with CFD and analytical model,'' International Journal of Heat and Mass Transfer, Vol 143, 118513, 2019.
[8] B. Luo, Y. Li, C. Chen and R. Li, ''Study on performance of Vuilleumier cycle heat pump for residential heating,'' Energy Conversion and Management, Vol. 274, 116474, 2022.
[9] P. Zou, Q. Gao, S. Wang, J. Yang, B. Luo, P. Hofbauer, J. Liu, Y. Huang, C. Ren, ''A method of analyzing the respective performances of hypothetical stirling engine and stirling cooler in Vuilleumier machine,'' International Journal of Refrigeration, Vol. 118, pp. 376-383, 2020.
[10] Chen, Hanfei, P. Hofbauer, and J. P. Longtin. "Multi-objective optimization of a free-piston Vuilleumier heat pump using a genetic algorithm," Applied Thermal Engineering, Vol. 167, 114767, 2020.
[11] F. Sun, J. Zhao, L. Fu, J. Sun and S. Zhang, ''New district heating system based on natural gas-fired boilers with absorption heat exchangers,'' Energy, Vol. 138, pp. 405-418, 2017.
[12] P Shi, L. S. Wang, P. Schwartz and P. Hofbauer, ''State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses,'' Applied Energy, Vol. 277, 115549, 2020.
[13] J. Woods and E. Bonnema, "Regression-based approach to modeling emerging HVAC technologies in EnergyPlus: A case study using a Vuilleumier-cycle heat pump," Energy and Buildings, Vol. 186, pp. 195-207, 2019.
[14] L. Zhang, J. Guan, B. Luo, J. Liu, Y. Huang and P. Hofbauer, "Effects of temperatures on dynamic parameters of Vuilleumier machine with dwell motion based on developed third-order numerical model." International Journal of Refrigeration, Vol. 146, pp. 214-224, 2023.
[15] G. Dogkas, E. Rogdakis and P. Bitsikas, ''3D CFD simulation of a Vuilleumier heat pump,'' Applied Thermal Engineering, Vol. 153, pp. 604-619, 2019.
[16] J. Sun, J. Guan, B. Luo, J. Liu and P. Hofbauer, "Multi-objective optimization of thermodynamic and dynamic performance of free-piston Vuilleumier heat pump using NSGA-II." International Journal of Refrigeration, Vol. 151, pp. 161-172, 2023.
[17] C. H. Cheng, H. S. Yang, Y. H. Tan, and J. H. Li, "Modeling of the dynamic characteristics and performance of a four‐cylinder double‐acting Stirling engine," International Journal of Energy Research, vol. 45, no. 3, pp. 4197-4213, 2020.
[18] R. F. Barron and G. F. Nellis, Cryogenic Heat Transfer. CRC Press, 2017.
[19] R. A. Ackermann, Cryogenic Regenerative Heat Exchangers. Springer US, 2013.
[20] G. Swift, "Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators," The Journal of the Acoustical society of America, Vol. 143, p.2110, 2018.
[21] H. Hachem, R. Gheith, F. Aloui, and S. B. Nasrallah, "Optimization of an air-filled Beta type Stirling refrigerator," International Journal of Refrigeration, Vol. 76, pp. 296-312, 2017.
[22] Y. Xie and X. Sun, "Thermodynamic Analysis of a Waste Heat Driven Vuilleumier Cycle Heat Pump," Entropy, Vol. 17, no. 3, pp. 1452-1465, 2015.
[23] L. Miao, K. Wang, X. Lu, Y. Zhang and J. Liu, ''Microchannel magnetic regenerators with optimized porosity by electrodischarge drilling: Microstructure and refrigeration performance,'' Materialia, Vol. 33, 102034, 2024.
[24] J. Ye, E. Jiaqiang and Q Peng, ''Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance,'' Energy, Vol. 263, Part E, 126063, 2023.
[25] S. P. Kanchi, S. Sundari, C. V. S. P. Rao and S. Raju, ''Influence of wall thickness on mechanical properties and porosity of additive manufactured polymer-based porous structures for fibula bone regeneration,'' Materials Today: Proceedings, 2023.
[26] Y. Liu, T. Liu, R. Ding, F. He and J. Wang, ''Experimental and numerical investigation of transpiration cooling with gradient porosity layout for the thermal protection of nose cone,'' Aerospace Science and Technology, Vol. 149, 109140, 2024.
[27] C. Peng, R. Long, Z. Liu and W. Liu, ''Improving adsorption hydrogen storage performance via triply periodic minimal surface structures with uniform and gradient porosities,'' International Journal of Hydrogen Energy, Vol. 53, pp. 422-433, 2024.
[28] W. Chen, K. Wang, Y. Wang, S. Tu, Z. Liu and H. Su, ''Numerical investigation and optimal design of transpiration cooling plate structure for gradient porosity,'' International Journal of Thermal Sciences, Vol. 197, 108755, 2024.
[29] X. Han, H. Xu and Y. Li, ''Experimental investigation on thermochemical reaction with gradient-porosity reactor for medium temperature heat storage applications,'' Journal of Energy Storage, Vol. 78, 110021, 2024.