| 研究生: |
楊宜蒨 Yang, Yi-Cian |
|---|---|
| 論文名稱: |
應用於積體光學考量訊號損耗之光波導繞線演算法 Signal Loss Aware Waveguide Routing Algorithm for Integrated Optics |
| 指導教授: |
何宗易
Ho, Tsung-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 醫學資訊研究所 Institute of Medical Informatics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 積體光學 、光波導繞線 、訊號損失 |
| 外文關鍵詞: | Integrated Optics, Waveguide Routing, Signal Loss |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於光的先天特性,以光子為介質來傳送訊號可以使傳送速度與頻寬
大幅提昇,利用此優異性質,可以使得模組與模組/晶片與晶片間訊號的
傳遞以更有效率的方式進行。因此,積體光學被視為是下個世代的眾多新
興技術之一,並且在現實生活中的許多應用像是電信、資料處理、消費性
電子等等也扮演了重要角色。光的傳播過程中,在光波導交叉與彎曲的地
方會有繞射與折射的現象發生。不像傳統的電子積體電路,光子積體電路
尚未有一個較良好的訊號修復機制與能力,這也使得光波導繞線成為設計
光子積體電路的瓶頸之一。
關於這個問題,現有研究的解決方法為利用固有的排序演算法為基礎
去做繞線,以此來確保交叉數為最小值,並且加入了一些限制,希望達到
減少轉彎次數的目的,然而,此方法並沒有很有效地降低轉彎次數,因為
這種單純的排序機制並加入一些限制的方法較沒彈性,可能反而導致大角
度的轉彎數變多。因此,針對此種光波導繞線問題我們開發了一個整數線
性規劃的模型,同時考慮交叉個數與轉彎角度所帶來的損失,以及盡量減
少所需面積。並且藉由一個切割技巧,將原本的問題切成更小的問題來減
低時間複雜度。實驗結果顯示,我們提出來的這個方法能夠非常有效率地
降低訊號損失以及面積使用量。
Due to the superior nature of light, data transfer from module-to-module/chip-
to-chip in photonic integrated circuit (PIC) could be accomplished in a more
efficient way. Therefore, integrated optics is regarded as one of the most emerg-
ing technologies in next generation and plays an important role in several real-
world applications such as telecommunication, information processing, ......,
etc. During light propagation, diffraction and refraction may occur because of
the impact of waveguide crossing and bending, respectively. Unlike electronic
integrated circuits (EIC), PIC lacks the inherent signal restoration capabilities
of static-CMOS. Therefore signal loss is unavoidable and is considered as the
bottleneck of waveguide routing in PIC. Existing works utilized the inherent
sorting-based techniques with some revision to maintain the crossing minimal.
Also several constraints are imposed in expection of reducing the number of
bending. However, the sorting-based technique with some constraints imposed
cannot effectively reduce the signal loss. As a result of the inflexibility of this
routing mechanism, the number of sharp bendings may rather increase, which
results to more attenuation of transmitted signal accordingly. We develop an
Integer Linear programming (ILP) model for waveguide routing algorithm to
simultaneously minimize the impact of waveguide crossing, bending, and the
number of routing tracks. Moreover, a crossing-driven partitioning approach
is adopted to further reduce the time complexity of ILP model. Experimental
results show that our proposed approach is very effective on improving both
the signal loss and area utilization.
[1] C. Condrat, P. Kalla, and S. Blair, “Channel routing for integrated op-
tics,” Proc. ACM/IEEE SLIP, pp. 1–8, 2013.
[2] C. Condrat, P. Kalla, and S. Blair, “Crossing-aware channel routing for
photonic waveguides,” Proc. IEEE MWSCAS, pp. 4–7, 2013.
[3] W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss,
low-cross-talk crossings for silicon-on-insulator nanophotonic waveg-
uides,” Optics Letters, Vol. 32, No. 19, pp. 2801–2803, 2007.
[4] K. Chaudhary and P. Robinson, “Channel routing by sorting,” IEEE
TCAD, Vol. 10, pp. 754–760, Jun. 1999.
[5] Robert G. Hunsperger, Integrated Optics: Theory and Technology, 6nd
ed., Spring-Verlag, 2009.
[6] T. K. Yu and D. T. Lee, “On the crossing distribution problem in two
regions,” JISE, Vol. 20, No. 1, pp. 1–25, Jan. 2004.
[7] H. Yamada et al., “http://www.ecei.tohoku.ac.jp/ecei web/Laboratory/
yamada e index.html”.
[8] Amin Vahdat, Hong Liu, Xiaoxue Zhao, and Chris Jognson, “The emerg-
ing optical fata venter,” Proc. OFC, 2011.
[9] J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M.
Lipson, “Low loss etchless silicon photonic waveguides,” Optics Express,
Vol. 17, pp. 4752–4757, March 2009.
[10] Y. Qian, S. Kim, J. Song, G. P. Nordin, and J. Jiang, “Compact and low
loss silicon-on-insulator rib waveguide 90◦ bend,” Optics Express, Vol.
14, pp. 6020–6028, 2006.
[11] Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator
strip waveguides and bends,” Optics Express, Vol. 12, pp. 1622–1631,
April 2004.
[12] C. Condrat, P. Kalla, and D. Blair, “Logic synthesis for integrated op-
tics,” Proc. ACM GLSVLSI, Lausanne, Switzerland, 2011, pp. 13-18.
[13] D. Ding, Y. Zhang, H. Huang, R. T. Chen, and D. Z. Pan, “O-Router:
An optical routing framework for low power on-chip silicon nani-photonic
integrtion,” Proc. 46th Annu DAC, New York, NY, USA, 2009, pp. 264-
269.
[14] J. Orcutt and R. Ram, “Photonic device layout within the foundary
CMOS design environment,” IEEE Photon. Technol. Lett., vol. 22, no.
8, pp. 544-546, Apr. 15, 2010.
[15] D. Ding, B. Yu, and D. Pan, “GLOW: A global router for low-power
thermal-reliable interconnect synthesis using photonic wavelength mul-
tiplexing,” Proc. 17th ASP-DAC, Sydney, NSW, Australia, 2012, pp.
621-626.
[16] Y. Zheng et al., “Power-efficient calibration and reconfiguration for opti-
cal network-on-chip,” J. Opt Commun. Netw., vol. 4, no. 12, pp. 955-966,
Dec 2012.
[17] D. A. Roberts, M. Rahm, J. B. Pendry and D. R. Smith,
“Transformation-optical design of sharp waveguide bends and corners,”
Applied Physics Letter, 93, 251111 (2008).
[18] K. Wang, D. R. Selviah, I. Papakonstantinou, F. A. Fern’andez and H.
Baghsiahi, “Optical waveguide modeling measurement and design for
optical printed circuit board.”
[19] C. Condrat, P. Kalla, and S. Blair, “Crossing-aware channel routing for
integrated optics,” IEEE TCAD, pp. 814–825, 2014.
[20] B. Jalai and S. Fathpour, “Silicon Photonics,” Journal of Lightwave
Technology, vol. 24, no. 12, december 2006.
[21] Intel, Inc., “www.intel.com/content/www/us/en/io/thunderbolt/
thunderbolt-technology-developer.html”.
[22] IBM, Inc., “http://www.zurich.ibm.com/st/photonics/”
[23] Synopsys, Inc., “optics.synopsys.com/rsoft/”
校內:2019-08-29公開