| 研究生: |
陳雲玉 Tran Duong Thuy |
|---|---|
| 論文名稱: |
用於生物可吸收鎂合金骨科植入物的旋轉塗佈和浸泡塗佈明膠/奈米結構羥基磷灰石 Spin and Dip Coating with Gelatin/Nanostructured Hydroxyapatite for Bioabsorbable Magnesium Alloy Orthopedic Implants |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 鎂合金 、耐腐蝕 、浸塗 、旋塗 、體外 、體內 |
| 外文關鍵詞: | Mg alloys, corrosion resistance, dip-coating, spin-coating, in vitro, in vivo |
| 相關次數: | 點閱:207 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於其可接受的生物力學特性、高生物相容性和骨傳導性,可降解鎂 (Mg) 合金可用於骨科植入物。 高腐蝕速率從根本上限制了它在人體內所遭受的鎂。 在這項研究中,將明膠/奈米羥基磷灰石(Gel/nHA) 聚合物層浸漬並旋塗到 ZK60 鎂合金上,以探索體外和體內的耐腐蝕性和生物相容性。 塗層組將腐蝕率降低了 59% 和81%,使電流密度分別從31.22 A/cm2 降至 12.83 A/cm2 和 5.83A/cm2。 在耐腐蝕性方面,浸塗組的性能優於旋塗組。 浸塗組釋放的氫氣量最少(17.5 mL),pH 值最低(8.23),電流密度降低 45%。此研究使用類骨母細胞(MG63)細胞生長率均大於 75%,因此發現鎂基板和塗層材料沒有風險。裸金屬組的抗溶血和抗血小板粘附水平低於浸塗組和旋塗組,其細胞增殖水平高於裸金屬組,OD 值顯示(分別為 3.3、3.0 和 2.5)。這兩種塗層技術在細胞反應、細胞遷移、溶血或血小板粘附方面沒有顯示出明顯的變化。 對活體大鼠進行的物實驗結果指出,旋塗組比浸塗組具有更多的質量損失和腐蝕,這表明浸塗組的耐腐蝕性能最低較差。 此外,血液生化和組織病理學測試表明,本研究中使用的所有材料在動物實驗中確認了其生物相容性。 儘管浸塗的耐腐蝕性在體外和體內均高於旋塗,但目前的研究表明這兩種方法在細胞和器官的反應性方面沒有明顯差異。
Degradable magnesium (Mg) alloy is viable for orthopedic implants due to its acceptable biomechanical characteristics, high biocompatibility, and osteoconductivity. The high corrosion rate fundamentally limits the Mg it suffers in the human body. In this work, a Gelatin/nanoHydroxyapatite (Gel/nHA) polymeric layer was dip-coated and spin-coated onto a ZK60 Mg alloy to explore corrosion resistance and biocompatibility in vitro and in vivo. The coated groups reduced the corrosion rate by 59% and 81%,bringing current density down from 31.22 A/cm2 to 12.83 A/cm2 and 5.83 A/cm2, respectively. In terms of corrosion resistance, the performance of the dip-coating group was better than that of the spin-coating group. The dip-coating group had the least amount of hydrogen released (17.5 mL), the lowest pH value (8.23), and a decrease in current density of 45%. As the relative growth rate in vitro was greater than 75% for all groups tested with MG63, it was
found that the Mg substrate and coating materials were risk-free. The uncoated group had lower levels of anti-hemolysis and antiplatelet adhesion than the dip-coating and spin-coating groups, which had greater levels of cell proliferation than the uncoated group shown by the OD value (3.3, 3.0, and 2.5, respectively). The two coating techniques showed no noticeable change in cellular response, cell migration, hemolysis, or platelet adherence. The animal tests done on living rats indicated conclusively that the spin-coating group had more mass loss and corrosion than the dip-coating group which indicated the dip-coating group had the lowest corrosion resistance ability. In addition, the blood biochemistry and histopathology tests revealed that all the materials used in this study were biocompatible with the examined living animals. Even though the corrosion resistance of dip-coating was greater than that of spin-coating both in vitro and in vivo, there was no notable difference in the responsiveness of cells and organs between the two coating processes.
1. Mitsuo Niinomi, Masaaki Nakai, and Junko Hieda, Development of new metallic alloys for biomedical applications. Acta biomaterialia, 2012. 8(11): p. 3888-3903.
2. Mark P Staiger, Alexis M Pietak, Jerawala Huadmai, and George Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006. 27(9): p. 1728-1734.
3. Mythili Prakasam, Janis Locs, Kristine Salma-Ancane, Dagnija Loca, Alain Largeteau, and Liga Berzina-Cimdina, Biodegradable Materials and Metallic Implants-A Review. Journal of functional biomaterials, 2017. 8(4): p. 44.
4. Kevin L Ong, Brian Min Yun, and Joshua White, New biomaterials for orthopedic implants. Orthopedic Research and Reviews, 2015. 7: p. 107-130.
5. Piergiorgio Gentile, Valeria Chiono, Irene Carmagnola, and Paul V Hatton, An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International journal of molecular sciences, 2014. 15(3): p. 3640-3659.
6. Fayna Mammeri, Nanostructured flexible PVDF and fluoropolymer-based hybrid films, in Frontiers of Nanoscience. 2019, Elsevier. p. 67-101.
7. Ck Seal, K Vince, and Ma Hodgson. Biodegradable surgical implants based on magnesium alloys–A review of current research. IOP conference series: materials science and engineering. 2009. IOP Publishing.
8. Jochem Nagels, Mariëlle Stokdijk, and Piet M Rozing, Stress shielding and bone resorption in shoulder arthroplasty. Journal of shoulder elbow surgery, 2003. 12(1): p. 35-39.
9. Iskandar, Maria Emil, Arash Aslani, and Huinan Liu, The effects of nanostructured hydroxyapatite coating on the biodegradation and cytocompatibility of magnesium implants. Journal of Biomedical Materials Research Part A, 2013. 101(8): p. 2340-54.
10. Jürgen Vormann, Magnesium: nutrition and metabolism. Molecular aspects of medicine, 2003. 24(1-3): p. 27-37.
11. Guangling Song, Control of biodegradation of biocompatable magnesium alloys. Corrosion science, 2007. 49(4): p. 1696-1701.
12. Pravahan Salunke, Vesselin Shanov, and Frank Witte, High purity biodegradable magnesium coating for implant application. Materials Science and Engineering: B, 2011. 176(20): p. 1711-1717.
13. Xin Y, Tao Hu, and Chu P.K., In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater., 2011. 7(4): p. 1452-9.
14. Guan Ling. Song and Andrej Atrens, Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1999. 1(1): p. 11-33.
15. Hongwei Huo, Ying Li, and Fuhui Wang, Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science, 2004. 46(6): p. 1467-1477.
16. Je Gray‐Munro and M Strong, The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. Journal of Biomedical Materials Research Part A, 2009. 90(2): p. 339-350.
17. Li-Han Lin, Hung-Pang Lee, and Ming-Long Yeh, Characterization of a Sandwich PLGA-Gallic Acid-PLGA Coating on Mg Alloy ZK60 for Bioresorbable Coronary Artery Stents. Materials (Basel), 2020. 13(23): p. 5538.
18. Feng Peng, Donghui Wang, Dongdong Zhang, Bangcheng Yan, Huiliang Cao, Yuqin Qiao, et al., PEO/Mg–Zn–Al LDH composite coating on Mg alloy as a Zn/Mg ion-release platform with multifunctions: enhanced corrosion resistance, osteogenic, and antibacterial activities. ACS Biomaterials Science Engineering, 2018. 4(12): p. 4112-4121.
19. Thiago F Conceicao, N Scharnagl, C Blawert, W Dietzel, and K. U Kainer, Corrosion protection of magnesium alloy AZ31 sheets by spin coating process with poly(ether imide) [PEI]. Corrosion Science, 2010. 52(6): p. 2066-2079.
20. Jan Van Stam, Mikael Andersén, and Ellen Moons. Comparing morphology in dip-coated and spin-coated polyfluorene: Fullerene films. Organic Photovoltaics XVII. 2016. SPIE.
21. Alihosseini Farzaneh, Plant-based compounds for antimicrobial textiles, in Antimicrobial Textiles. 2016, Elsevier. p. 155-195.
22. Aliakbar Jafarzadeh, Tahmineh Ahmadi, Majid Taghian Dehaghani, and Kamran Mohemi, Synthesis, Corrosion and Bioactivity Evaluation of Gelatin/Silicon and Magnesium Co-Doped Fluorapatite Nanocomposite Coating Applied on AZ31 Mg Alloy. Russian Journal of Non-Ferrous Metals, 2018. 59(4): p. 458-464.
23. Ingeborg Elisabeth Carlström, Ahmad Rashad, Elisabetta Campodoni, Monica Sandri, Kristin Syverud, Anne Isine Bolstad, et al., Cross-linked gelatin-nanocellulose scaffolds for bone tissue engineering. Materials Letters, 2020. 264: p. 127326.
24. N. Celikkin, S. Mastrogiacomo, J. Jaroszewicz, X. F. Walboomers, and W. Swieszkowski, Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Journal of Biomedical Materials Research Part A, 2018. 106(1): p. 201-209.
25. Sawittree Rujitanapanich, Pitoon Kumpapan, and Panthong Wanjanoi, Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 2014. 56: p. 112-117.
26. Yi Deng, Yuhua Sun, Xiaofang Chen, Peizhi Zhu, and Shicheng Wei, Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin. Materials Science Engineering: C, 2013. 33(5): p. 2905-2913.
27. Yang Song, Shaoxiang Zhang, Jianan Li, Changli Zhao, and Xiaonong Zhang, Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater, 2010. 6(5): p. 1736-42.
28. Liping Xu, Feng Pan, Guoning Yu, Lei Yang, Erlin Zhang, and Ke Yang, In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 2009. 30(8): p. 1512-1523.
29. Fu-Zhai Cui, Jing-Xin Yang, Yan-Peng Jiao, Qing-Shui Yin, Yu Zhang, and In-Seop Lee, Calcium phosphate coating on magnesium alloy for modification of degradation behavior. Frontiers of Materials Science in China, 2008. 2(2): p. 143-148.
30. Mahmoud Azami, Fathollah Moztarzadeh, and Mohammadreza Tahriri, Preparation, characterization and mechanical properties of controlled porous gelatin/hydroxyapatite nanocomposite through layer solvent casting combined with freeze-drying and lamination techniques. Journal of Porous Materials, 2009. 17(3): p. 313-320.
31. Thiago F. Conceicao, N. Scharnagl, W. Dietzel, and K. U. Kainer, Corrosion protection of magnesium AZ31 alloy using poly(ether imide) [PEI] coatings prepared by the dip coating method: Influence of solvent and substrate pre-treatment. Corrosion Science, 2011. 53(1): p. 338-346.
32. Ian Johnson, Khalid Akari, and Huinan Liu, Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid. Nanotechnology, 2013. 24(37): p. 375103.
33. Da-Jun Lin, Fei-Yi Hung, Ming-Long Yeh, and Truan-Sheng Lui, Microstructure-modified biodegradable magnesium alloy for promoting cytocompatibility and wound healing in vitro. Journal of Materials Science: Materials in Medicine, 2015. 26(10): p. 248.
34. H. F. Li, X. H. Xie, Y. F. Zheng, Y. Cong, F. Y. Zhou, K. J. Qiu, et al., Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Scientific reports, 2015. 5(1): p. 10719.
35. Akimitsu Sato, Yoshinaka Shimizu, Yoshimichi Imai, Toshiji Mukai, Akiko Yamamoto, Chieko Miura, et al., Initial organ distribution and biological safety of Mg(2+) released from a Mg alloy implant. Biomedical Materials, 2018. 13(3): p. 035006.
36. Yf Wu, Ym Wang, Yb Jing, Jp Zhuang, Jl Yan, Zk Shao, et al., In vivo study of microarc oxidation coated biodegradable magnesium plate to heal bone fracture defect of 3 mm width. Colloids and Surfaces B: Biointerfaces, 2017. 158: p. 147-156.
37. Gerald S Frankel, Alejandro Samaniego, and Nick Birbilis, Evolution of hydrogen at dissolving magnesium surfaces. Corrosion Science, 2013. 70: p. 104-111.
38. S Fida Hassan, Mt Islam, N Saheb, and Mma Baig, Magnesium for Implants: A Review on the Effect of Alloying Elements on Biocompatibility and Properties. Materials (Basel), 2022. 15(16): p. 5669.
39. Mla Giknis and Chb Clifford, Clinical laboratory parameters for Crl: WI (Han) rats. Accel Drug Dev, 2008: p. 1-14.
40. Jiwoon Jeong, Jung Hun Kim, Jung Hee Shim, Nathaniel S Hwang, and Chan Yeong Heo, Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials research, 2019. 23(1): p. 1-11.
41. Juan Ignacio Rosales-Leal, Miguel A Rodríguez-Valverde, Giuseppe Mazzaglia, Pedro Jesús Ramón-Torregrosa, Lourdes Díaz-Rodríguez, Olga García-Martínez, et al., Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surfaces A: Physicochemical Engineering Aspects, 2010. 365(1-3): p. 222-229.
42. Iryna Kozina, Halina Krawiec, Maria Starowicz, and Magdalena Kawalec, Corrosion Resistance of MgZn Alloy Covered by Chitosan-Based Coatings. International Journal of Molecular Sciences, 2021. 22(15): p. 8301.
43. Anh Ngoc Nguyen, Jeanne Solard, Huyen Thi Thanh Nong, Chirine Ben Osman, Andres Gomez, Valérie Bockelée, et al., Spin Coating and Micro-Patterning Optimization of Composite Thin Films Based on PVDF. Materials (Basel), 2020. 13(6): p. 1342.
44. Wan Young Maeng, Ji Hae Yoon, and Dong Jin Kim, Effect of process conditions (withdrawal rate and coating repetition) on morphological characteristics of sol–gel TiO2 film during dip coating. Journal of Coatings Technology and Research, 2020. 17(5): p. 1171-1193.
45. Pannan I. Kyesmen, Nolwazi Nombona, and Mmantsae Diale, Effects of Film Thickness and Coating Techniques on the Photoelectrochemical Behaviour of Hematite Thin Films. Frontiers in Energy Research, 2021. 9: p. 683293.
46. Xiaohua Zhou, Jianan Ouyang, Li Li, Qing Liu, Congcong Liu, Mingying Tang, et al., In vitro and in vivo anti-corrosion properties and bio-compatibility of 5β-TCP/Mg-3Zn scaffold coated with dopamine-gelatin composite. Surface and Coatings Technology, 2019. 374: p. 152-163.
47. Hsu-Wei Fang, Kuo-Yen Li, Tai-Lun Su, Thomas Chun-Kuang Yang, Ji-Sheng Chang, Po-Liang Lin, et al., Dip coating assisted polylactic acid deposition on steel surface: Film thickness affected by drag force and gravity. Materials Letters, 2008. 62(21-22): p. 3739-3741.
48. Sam Siau, Alfons Vervaet, Siska Degrande, Etienne Schacht, and Andre Van Calster, Dip coating of dielectric and solder mask epoxy polymer layers for build-up purposes. Applied surface science, 2005. 245(1-4): p. 353-368.
49. V. Jothi, Akeem Yusuf Adesina, A. Madhan Kumar, Mohammad Mizanur Rahman, and J. S. Nirmal Ram, Enhancing the biodegradability and surface protective performance of AZ31 Mg alloy using polypyrrole/gelatin composite coatings with anodized Mg surface. Surface and Coatings Technology, 2020. 381: p. 125139.
50. Deni Noviana, Devi Paramitha, Mokhamad Fakhrul Ulum, and Hendra Hermawan, The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. Journal of Orthopaedic Translation, 2016. 5: p. 9-15.
51. Amy Chaya, Sayuri Yoshizawa, Kostas Verdelis, Nicole Myers, Bernard J. Costello, Da-Tren Chou, et al., In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater., 2015. 18: p. 262-9.
52. Krishnegowda Manasa and Rajashekaraiah Vani, Platelet disorders: an overview. Blood Coagulation Fibrinolysis, 2015. 26(5): p. 479-91.
53. Huafang Li, Ying Cong, Yufeng Zheng, and Lishan Cui, In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity. Materials Science and Engineering: C, 2016. 60: p. 554-559.
54. Seitz J-M, Eifler R, Bach F-W, and Maier H-J, Magnesium degradation products: effects on tissue and human metabolism. Journal of biomedical materials research Part A, 2014. 102(10): p. 3744-53.
55. Ochiai Hirotaka, Takako Shirasawa, Takahiko Yoshimoto, Satsue Nagahama, Akihiro Watanabe, Ken Sakamoto, et al., Elevated alanine aminotransferase and low aspartate aminotransferase/alanine aminotransferase ratio are associated with chronic kidney disease among middle-aged women: a cross-sectional study. BMC nephrology, 2020. 21(1): p. 471.
56. Y. F. Zheng, X. N. Gu, and F. Witte, Biodegradable metals. Materials Science and Engineering: R: Reports, 2014. 77: p. 1-34.
57. Manjeet Kumar, Rajesh Kumar, Sandeep Kumar, and Chander J Prakash, Biomechanical properties of orthopedic and dental implants: a comprehensive review. Handbook of Research on Green Engineering Techniques for Modern Manufacturing 2019. 1-13.