| 研究生: |
黃獻慶 Huang, Sian-Cing |
|---|---|
| 論文名稱: |
Ti-6Al-4V合金在低溫下之撞擊變形行為分析 Low Temperature Impact Deformation Behaviour of Ti-6Al-4V alloy |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 低溫 、霍普金森桿 、應變速率 、Ti-6Al-4V合金 |
| 外文關鍵詞: | low temperature, strain rate, Ti-6Al-4V alloy, split-Hopkinson bar |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用霍普金森高速撞擊試驗機並配合低溫裝置,來研究Ti-6Al-4V合金在低溫高應變速率下之塑性變形行為,訂溫度-150℃、0℃和25℃以及應變速率1000 s-1、3000 s-1和4300 s-1為實驗之條件,之後分析實驗所得之數據,並與微觀觀察(OM、SEM、TEM)做比較,以獲取兩者間之關連性。
實驗結果顯示,溫度與應變速率對Ti-6Al-4V合金的機械性質影響甚鉅。在相同溫度條件下,其塑流應力值、加工硬化率與應變速率敏感性係數均會隨應變速率之增加而上升,但熱活化體積會變小。在相同應變速率條件下,其塑流應力值、加工硬化率與應變速率敏感性係數則會隨溫度之增加而下降,不過熱活化體積會變大。另外,我們可以藉由Combined Johnson-Cook and Zerilli-Armstrong構成方程式,來精確的預測描述Ti-6Al-4V合金的塑性變形行為。
由光學顯微鏡觀察,可知Ti-6Al-4V合金中有絕熱剪切帶形成,其寬度隨著應變速率和溫度的上升而增加,而剪切帶中之裂縫生成與結合,正是導致材料破壞的主要原因。從掃描式電子顯微鏡的破壞形貌分析中,可發現大量韌窩組織,表示Ti-6Al-4V合金是屬於延性破壞模式,且在較高的應變速率和溫度下,會有較密且深的韌窩組織。另外,以穿透式電子顯微鏡分析微觀結構,可發覺差排數量會隨著應變速率上升而增加,但隨著的溫度上升,數量反而減少。
This study uses a split-Hopkinson bar to investigate the plastic deformation behavior of Ti-6Al-4V alloy at the strain rates of 1000 s-1, 3000 s-1 and 4300 s-1 and the temperatures of -150℃, 0℃and 25℃, respectively. The experimental results indicate that the effects of temperature and strain rate on mechanical properties of Ti-6Al-4V alloy are significant. At constant temperature, the flow stress, work hardening rate and strain rate sensitivity increase with increasing strain rate, but the activation volume decreases. For a constant strain rate, the flow stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, but the activation volume increases. The Combined Johnson-Cook and Zerilli-Armstrong constitutive equation can be used to describe the plastic deformation of Ti-6Al-4V alloy. The error between the predicted flow stress and the measured stress is found to be less than 5%.
Optical microscopy (OM) observations reveal that adiabatic shear bands form during the high strain rate deformation of Ti-6Al-4V alloy. The width of shear bands is found to increase with the increase of strain rate and temperature. Microvoid nucleation and growth within the shear bands are evident in the material fracture process. Scanning electron microscopy (SEM) fractographic observations show that the fracture features are characterized by transgranular dimpled structure, indicating that Ti-6Al-4V alloy has an excellent ductility. The density of the dimples increases with increasing strain rate and temperature. Transmission electron microscopy (TEM) observations show that the dislocation density increases with increasing strain rate, but decreases with increasing temperature. Based on the macroscopic analysis and microscopic observations, the correlations between mechanical properties and microstructure were established.
[1] H. Kolsky, “An Investigation of The Mechanical Properties of Materials at Very High Rates of Loading,” Proc. Phys. Soc., No. 62, pp. 676-700, 1949.
[2] F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rates,” Exp. Mech., Vol. 6, pp. 395-402, 1966.
[3] D. J. Steinberg, S. G. Cochran and N. W. Guinan, “A Constitutive Model for Metals Applicable at High Strain Rate,” J. Appl. Phys., Vol. 51, No. 3, pp. 1498-1504, 1980.
[4] J. R. Klepaczko, “Discussion of Microstructural Effects and Their Modelling at High Rates of Strain,” Int. Cong. Mech. Prop. Materials at High Rates of Strain, Oxford, pp. 283-298, 1989.
[5] R. A. Wood, Titanium Alloy Handbook, Metals and Ceramics Information Center Battelle, Publication No. MCIC-HB-02, December 1972.
[6] E. W. Collings and J. C. Ho, “Physical Properties of Titanium Alloy,” in the Science, Technology and Application of Titanium, in:R. I. Jaffee, N.E. Promisel (Eds.), Proc. First Int. Conf. on Titanium, London, Pergamon Press, Oxford, pp. 331, 1970.
[7] 賴耿陽, 金屬鈦理論與應用, 復漢出版社, pp. 31-41, 1980.
[8] I. Gurrappa, “Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications,” Materials Characterization, Vol. 51, pp. 131-139, 2003.
[9] Kathy Wang, “The Use of Titanium for Medical Applications in the USA,” Materials Science and Engineering A, Vol. 213, pp. I34-I37, 1996.
[10] V. Jantou, D.S. McPhail, R.J. Chater and A. Kearsley, “Analysis of Simulated Hypervelocity Impacts on a Titanium Fuel Tank from the Salyut 7 Space Station,” Applied Surface Science, Vol. 252, pp. 7120-7123, 2006.
[11] B.S. Rodchenkov, A.V. Kozlov and Yu.G. Kuznetsov, “Irradiation Behavior of Ti–4Al–2V (ΠT-3B) Alloy for ITER Blanket Modules Flexible Attachment,” Journal of Nuclear Materials, Vol. 367-370, pp. 1312-1315, 2007.
[12] Makoto Yamada, “An Overview on the Development of Titanium Alloys for Non-aerospace Application in Japan,” Materials Science and Engineering A, Vol. 213, pp. 8-15, 1996.
[13] ASM International, Titanium A Technical Guide, Materials Park, OH:ASM International, pp. 4, 1994.
[14] ASM International, Titanium Alloys, Materials Properties Handbook, Materials Park, OH:ASM International, pp. 483-635, 1994.
[15] H. S. Yang, G. Gurewita, and A. K. Mukherjee,“Mechanical Behavior and Microstructural Evolution During Superplastic Deformation of Ti-6Al-4V,”Materials Transactions, Vol. 32, No. 5, pp. 465-472, 1991.
[16] M. E. Meyer,“Strength and Ductility of a Titanium Alloy Ti-6Al-4V in Tension and Compressive Loading Under Low, Medium and High Rates of Strain,”Deutsche Gessellschaft fur Metallkunde, Ed. Lutiering, G., Zwicker, U. & W., pp. 1851-1858, 1984.
[17] K. Kawata and J. Shioiri, “High Velocity Deformation of Solids,” Springer-Verlag, Berlin/Heeidelberg, New York, pp. 98-107, 1978.
[18] Wulf, G.L., “High Strain Rate Compression of Titanium and Some Titanium Alloys,” Int. Jour. of Mech. Sci., Vol. 21, pp. 713-718, 1979.
[19] R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications,” pp. 129-167, 1980.
[20] U. S. Lindholm, “Measurement of Mechanical Properties,” Techniques of Metals Research, Vol. 5, pp. 199-271, 1971.
[21] U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Exp. Mech., Vol. 3, pp. 81-88, 1983.
[22] W. S. Lee and C. F. Lin, “Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures,” Materials Science and Engineering A, Vol. 241, pp. 48-59, 1998.
[23] J. D. Campbell, “Dynamic Plasticity : Macroscopic and Microscopic Aspects,” Mat. Sci. Eng., Vol. 12, pp. 3-21, 1973.
[24] D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
[25] J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Phil. Mag., Vol. 21, pp. 63-82, 1970.
[26] A. Seeger, “Dislocation and Mechanical Properties of Crystals,” Phil. Mag., Vol. 46, pp. 1194-1217, 1955.
[27] U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.
[28] W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
[29] J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
[30] Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
[31] Z. Gronostajski, “The Constitutive Equations for FEM Analysis,” Journal of Materials Processing Technology, Vol. 106, pp. 40-44, 2000.
[32] P. Ludwik, Elementte der Technologischen Mechanik, Springer Verlag, Berlin, pp. 32, 1909.
[33] L. E. Malvern, “The Propagation of Longitudinal Waves of Plastic Deformation in a Bar of Material Exhibiting Strain Rate Effect,” J Appl. Mech., Vol. 18, pp. 203-208, 1951.
[34] L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A Basic Approach for Strain Rate Dependent Energy Conversion Including Heat Transfer Effects : An Experimental and Numerical Study,” Journal of Materials Processing Technology, Vol. 182, pp. 319-326, 2007.
[35] T. Vinh, M. Atzali and A. Roche, “Fast Fracture of Some Usual Metals at Combined High Strain and High Strain Rate,” Mechanical Behavior of Materials, pp. 633-642, 1979.
[36] J. Duffy, Proc. Workshop on Shear Localization, Brown Univ. Report MRL-E-127, pp. 19-29, 1981.
[37] H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth,”International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
[38] H. Kobayashi and B. Dodd, “Formation of Adiabatic Shear Band in Steel and Titanium at Dynamic Rates,” J. Japan Soc. Tech. Plasticity, Vol. 29, pp. 1152-1158, 1988.
[39] F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
[40] D. Umbrello, R. M’Saoubi and J. C. Outeiro, “The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel,”International Journal of Machine Tools & Manufacture, Vol. 47, pp. 462-470, 2007.
[41] U. R. Andrade, M. A. Meyers and A. H. Chokshi, “Constitutive Description of Work- and Shock-Hardened Copper,” Scripta Metallurgica et Materialia, Vol. 30, No. 7, pp. 933-938, 1994.
[42] G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rate and High Temperatures,” Proceedings of Seventh International Symposium on Ballistics, pp. 541, 1983.
[43] T. J. Holmquist and G. R. Johnson “Determination of Constants and Comparison of Results for Various Constitutive Models,” J. Phys. Ⅲ, Vol. 1, pp. 853-860, 1991.
[44] L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel,”Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
[45] W. S. Lee and C. Y. Liu, “Comparison of Dynamic Compressive Flow Behavior of Mild and Medium Steels over Wide Temperature Range,” Metallurgical and Materials Transactions A, Vol. 36, pp. 3175-3186, 2005.
[46] A. R. Shahan and A.karimi Taheri, “Adiabatic Shear Band in Titanium and Titanium Alloys : a critical review,” Materials & Design Vol. 14, pp. 243-250, 1993.
[47] M. Nabil Bassim and N. Panic, “High Strain Rate Effects on the Strain of Alloy Steels,” Journal of Materials Processing Technology, Vol. 92-93, pp. 481-485, 1999.
[48] G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan and C.Y. Xu “Deformation localization and recrystallization in TC4 alloy under impact condition,” Materials Science and Engineering A, Vol. 395, pp. 98-101, 2005.
[49] Robert E. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles, PWS Publishing Company, pp. 103-108, 1991.
[50] R. K. Ham, “The Determination of Dislocation Densities in Thin Films,” Phil. Mag., Vol. 6, pp. 1183-1184, 1961.