| 研究生: |
時雅文 Shih, Ya-Wen |
|---|---|
| 論文名稱: |
提升工業廠房熱舒適的強制通風策略 Design Strategies of Forced Ventilation in Industrial Architecture for Thermal Comfort Improvement |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 工廠 、風速 、CFD數值模擬 、個案研究 、問卷 |
| 外文關鍵詞: | Factory, Wind Velocity, CFD, Case Study, Questionnaire |
| 相關次數: | 點閱:91 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著研究發展,不同建築類型有各自適合的主要環境控制策略,像是辦公空間的空調系統與住宅的自然通風,但工業廠房有其特殊性。
根據廠房作業環境的狀態分類,本研究的研究範圍為折衷環境類型的工廠建築。此類型廠房環境尚有改善的可能性,通常包含中低密度的作業人員以及散發餘熱的機械等等,使用空調系統的效益不佳,普遍會採用強制通風來達到熱舒適。
根據本研究的模擬結果顯示,主導整體有效風速範圍比例的是無效風速中的過小風速區間,而過大風速區間的比例甚微,整體而言都在5%以下,甚至有90%的模擬結果落在1%以下。因此調高風速是非常有效的策略,但風速並不能無上限的增加有效風速範圍的比例,相反的,當氣流強到一定的程度時有效風速範圍的比例即開始下降,檢視模擬結果發現此現象是由於氣流彼此碰撞、抵銷,反而導致了有效風速範圍的比例減少。達到風速的效益上限後,想要更進一步提升有效風速範圍就要靠整體的策略設計,其中又以接駁扇的配置最具影響。
透過適當的設計調整,整體有效風速範圍比例可以達到倍率的差異,在15m跨距與30m跨距的模擬結果中可以看到,Case 0與Case 14在0-2m的分析範圍內的有效風速比例差了61.5%與61.1%,若是將空間配置進一步安排,將無效區域設置為機具設備區或儲藏區,則有機會再往上提升有效區域的比例。
In Taiwan's industrial architecture, indoor environments can be categorized into three types: Precisely Controlled Environments (PCE), Austere Environments (AE), and Eclectic Environments (EE). Traditional industries like footwear, textile, or light metal processing usually employ forced ventilation to improve indoor thermal comfort in their EE spaces. This study explored the use of negative pressure fans to enhance the thermal environment in a large-span factory.
The research involved an experimental study to validate the simulation result of computational fluid dynamics (CFD). A case study was also conducted in an actual factory, and the design strategies for fan installation were provided through simulation studies.
With appropriate design adjustments, the effective wind velocity ratio showed a significant difference of 61.5% and 61.1%. If the space configuration is further arranged, and the invalid area is transformed into equipment or storage space, it may be possible to increase the proportion of the effective area even further.
(一) 中文文獻
1. 朱佳仁(2006),風工程概論,科技圖書
2. 朱清宇譯,村上周三著(2007),CFD與建築環境設計,中國建築工業出版社
(二) 英文文獻
1. ASHRAE Handbook Fundamentals, Chapter 9 Thermal Comfort. 2. (2021).
2. ANSI/ASHRAE Standard 55-2010. (2010).
3. Li Huang, Qin Ouyang, Yingxin Zhu, Lingfei Jiang, (2013). A study about the demand for air movement in warm environment, Building and Environment, Volume 61, Pages 27-33.
4. Hiroko Kubo, Norio Isoda, Hikaru Enomoto-Koshimizu, (1997). Cooling effects of preferred air velocity in muggy conditions, Building and Environment, Volume 32, Issue 3, Pages 211-218.
5. AIP Conference Proceedings 1971, 030012 (2018)
6. Wijewardane, Samantha & Jayasinghe, M.T.R.. (2010). Identifying the adaptive opportunities in factory environments for a better thermal comfort -preliminary studies.
7. Weilin Cui, Guoguang Cao, Qin Ouyang, Yingxin Zhu, (2013). Influence of dynamic environment with different airflows on human performance, Building and Environment, Volume 62, Pages 124-132.
8. T.T. Chow, K.F. Fong, B. Givoni, Zhang Lin, A.L.S. Chan, (2010). Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment, Building and Environment, Volume 45, Issue 10, Pages 2177-2183.
9. Laia Ledo Gomis, Massimo Fiorentini, Daniel Daly, Potential and practical management of hybrid ventilation in buildings, (2021). Energy and Buildings, Volume 231.
10. Zhou, J., Hua, Y., Xiao, Y., Ye, C., Yang, W. (2021). Analysis of Ventilation Efficiency and Effective Ventilation Flow Rate for Wind-driven Single-sided Ventilation Buildings. Aerosol Air Qual. Res. 21.
11. Pilsitz, Martin. (2011). Determining factors for the architectural development of factory buildings in Budapest between 1860 and 1918. Periodica Polytechnica Architecture. 42. 43.
12. Apa Loader, R., & Skinner, J. (1991). Management, Construction And Architecture: The Development Of The Model Factory. Construction History, 7, 83–103.
13. Kaldor, N. (1968). Productivity and Growth in Manufacturing Industry: A Reply. Economica, 35(140), 385–391.
14. Elhadary, Mohamed I., Abdullah M.Y. Alzahrani, Reda M.H. Aly, and Bahaa Elboshy. (2021). A Comparative Study for Forced Ventilation Systems in Industrial Buildings to Improve the Workers’ Thermal Comfort, Sustainability 13, no. 18: 10267.
15. B. Fletcher, A.E. Johnson, (1992). Ventilation of small factory units, Journal of Wind Engineering and Industrial Aerodynamics, Volume 40, Issue 3, Pages 293-305.
16. Fatemi, Nawrose. (2012). Study of Thermal Environment in Relation to Human Comfort in Production Spaces of Ready Made Garments Factories in the Dhaka Region. 10.13140/RG.2.2.33781.09447.
17. Meese GB, Schiefer RE, Küstner P, Kok R, Lewis MI. Subjective comfort vote and air temperature as predictors of performance in factory workers. Eur J Appl Physiol Occup Physiol. 1986;55(2):195-7. doi: 10.1007/BF00715004. PMID: 3699007.
18. Listiani Nurul Huda, (2018). IOP Conf. Ser.: Earth Environ. Sci. 126 012143.
19. Md Mohataz Hossain, Robin Wilson, Benson Lau, Brian Ford, (2019). Thermal comfort guidelines for production spaces within multi-storey garment factories located in Bangladesh, Building and Environment, Volume 157, Pages 319-345.
20. Sugiono, Sugiono & Fardian, Ryan & Novareza, Oyong. (2017). Thermal comfort study of plastics manufacturing industry in converting process. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska. 26. 401-411.
21. Wijewardane, Samantha & Jayasinghe, M.T.R.. (2008). Thermal comfort temperature range for factory workers in warm humid tropical climates. Renewable Energy. 33. 2057-2063. 10.1016/j.renene.2007.11.009.
22. Yau, Yat & Chew, B.T. & Saifullah, A Z A. (2012). Thermal comfort temperature range study for workers in a factory in Malaysia. 10th International Conference on Healthy Buildings 2012. 2. 1218-1223.
23. Haiying Wang, Lin Sun, Hongyu Guan, Songtao Hu, (2018). Thermal environment investigation and analysis on thermal adaptation of workers in a rubber factory, Energy and Buildings, Volume 158, Pages 1625-1631.
24. Zhang, Wei & Gao, Zhi & Ding, Wowo. (2015). Outdoor thermal comfort indices: a review of recent studies (in Chinese language). J Environ Health. 32. 836-840.
25. Li, P., T. Parkinson, G. Brager, S. Schiavon, T. C. T. Cheung, and T. Froese. 2019. A data-driven approach to defining acceptable temperature ranges in buildings. Building and Environment.
26. Ricardo Forgiarini Rupp, Natalia Giraldo Vásquez, Roberto Lamberts, (2015). A review of human thermal comfort in the built environment, Energy and Buildings, Volume 105, Pages 178-205.
27. Nicol, F. (2004). Adaptive thermal comfort standards in the hot–humid tropics. Energy and Buildings, 36(7), 628–637.
28. Haiying Wang, Guodan Liu, Songtao Hu, Chao Liu,
29. Experimental investigation about thermal effect of colour on thermal sensation and comfort, (2018), Energy and Buildings, Volume 173, Pages 710-718.
30. Honjo, Tsuyoshi. (2009). Thermal Comfort in Outdoor Environment. Global Environmental Research. 13.
31. Hongyu Guan, Songtao Hu, Guodan Liu, Lu Zhang, The combined effects of temperature and noise on the comfort perceptions of young people with a normal Body Mass Index, (2020). Sustainable Cities and Society, Volume 54, 101993.
32. Wenjie Ji, Yingxin Zhu, Bin Cao, Development of the Predicted Thermal Sensation (PTS) model using the ASHRAE Global Thermal Comfort Database, (2020). Energy and Buildings, Volume 211, 109780.
33. Okayama, Tsuyoshi & Okamura, Kenichi & Park, Jai-Eok & Ushada, Mirwan & Murase, Haruhiko. (2008). A Simulation for Precision Airflow Control using Multi-Fan in a Plant Factory. Environment Control in Biology. 46. 183-194.
34. Jamshidi, Hamed & Nilsson, Håkan & Chernoray, Valery. (2015). CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments. International Journal of Fluid Machinery and Systems. 8. 113-123.
35. Fan, Ruiqi & Liu, Huan & Zhou, Shenghan & He, Zhongqun & Zhang, Xin & Liu, Ke & Wang, Jinxiao & Yang, Qichang & Zheng, Yangxia & lu, Wei. (2020). CFD simulation of the airflow uniformity in the plant factory. IOP Conference Series: Earth and Environmental Science. 560.
36. Zhang, Ying & Kacira, Murat & An, Lingling. (2016). A CFD study on improving air flow uniformity in indoor plant factory system. Biosystems Engineering. 147. 193-205.