簡易檢索 / 詳目顯示

研究生: 時雅文
Shih, Ya-Wen
論文名稱: 提升工業廠房熱舒適的強制通風策略
Design Strategies of Forced Ventilation in Industrial Architecture for Thermal Comfort Improvement
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 工廠風速CFD數值模擬個案研究問卷
外文關鍵詞: Factory, Wind Velocity, CFD, Case Study, Questionnaire
相關次數: 點閱:91下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著研究發展,不同建築類型有各自適合的主要環境控制策略,像是辦公空間的空調系統與住宅的自然通風,但工業廠房有其特殊性。
    根據廠房作業環境的狀態分類,本研究的研究範圍為折衷環境類型的工廠建築。此類型廠房環境尚有改善的可能性,通常包含中低密度的作業人員以及散發餘熱的機械等等,使用空調系統的效益不佳,普遍會採用強制通風來達到熱舒適。
    根據本研究的模擬結果顯示,主導整體有效風速範圍比例的是無效風速中的過小風速區間,而過大風速區間的比例甚微,整體而言都在5%以下,甚至有90%的模擬結果落在1%以下。因此調高風速是非常有效的策略,但風速並不能無上限的增加有效風速範圍的比例,相反的,當氣流強到一定的程度時有效風速範圍的比例即開始下降,檢視模擬結果發現此現象是由於氣流彼此碰撞、抵銷,反而導致了有效風速範圍的比例減少。達到風速的效益上限後,想要更進一步提升有效風速範圍就要靠整體的策略設計,其中又以接駁扇的配置最具影響。
    透過適當的設計調整,整體有效風速範圍比例可以達到倍率的差異,在15m跨距與30m跨距的模擬結果中可以看到,Case 0與Case 14在0-2m的分析範圍內的有效風速比例差了61.5%與61.1%,若是將空間配置進一步安排,將無效區域設置為機具設備區或儲藏區,則有機會再往上提升有效區域的比例。

    In Taiwan's industrial architecture, indoor environments can be categorized into three types: Precisely Controlled Environments (PCE), Austere Environments (AE), and Eclectic Environments (EE). Traditional industries like footwear, textile, or light metal processing usually employ forced ventilation to improve indoor thermal comfort in their EE spaces. This study explored the use of negative pressure fans to enhance the thermal environment in a large-span factory.
    The research involved an experimental study to validate the simulation result of computational fluid dynamics (CFD). A case study was also conducted in an actual factory, and the design strategies for fan installation were provided through simulation studies.
    With appropriate design adjustments, the effective wind velocity ratio showed a significant difference of 61.5% and 61.1%. If the space configuration is further arranged, and the invalid area is transformed into equipment or storage space, it may be possible to increase the proportion of the effective area even further.

    第一章 緒論 1 1-1研究背景與動機 1 (1) 工廠廠房建築的特殊性與分類 1 (2) 風環境在亞熱帶工廠的熱舒適潛力與重要性 3 (3) 重視熱舒適的必要性 4 1-2研究目的 6 (1) 提供強制通風相關數據與檢討標準參考 6 (2) 提升熱舒適的工廠通風策略 6 1-3研究範圍與流程 7 (1) 研究範圍 7 (2) 研究流程 8 第二章 文獻回顧與相關理論 9 2-1工廠改善策略評估 9 (1) 蒸發冷卻系統 9 (2) 強制通風系統 9 2-2熱舒適模型 10 (1) 靜態模型 10 (2) 自適應模型 11 2-3過往相關研究之風速範圍區間 12 (1) Mclntyre, 1978 12 (2) Marc Fountain, 1994 13 (3) Hiroko Kubo, 1997 13 (4) T. T. Chowa, 2010 14 2-4風環境與氣流對熱舒適的影響 16 (1) 溫暖環境對空氣流動的需求 16 (2) 不同流體環境對人體表現的影響 16 第三章 研究方法 19 3-1實際量測 19 (1) 實測目的 19 (2) 實測內容 19 (3) 實驗設備與儀器 19 3-2量測地點與流程 21 (1) 實驗場域設置 21 (2) 現場實際量測 22 3-3 CFD數值模擬應用 24 (1) CFD數值模擬描述 24 (2) CFD數值模擬解析 24 (3) 紊流模型 26 (4) 數值模擬之基本假設 28 (5) 標準 k-ε 紊流模型 29 (6) 收斂標準 30 3-4風環境評估方式 32 (1) 有效風速範圍(Effective Wind Velocity Range) 32 (2) 無效風速範圍(Ineffective Wind Velocity Range) 32 3-5 評估範圍 33 (1) 1.2m切片(坐姿工作) 33 (2) 1.5m 切片(站姿工作) 33 (3) 0-2m 空間(人體活動範圍) 33 第四章 數值模擬驗證與設計參考 35 4-1 CFD數值模擬風速驗證 35 (1) 量測結果 35 (2) 數值模擬設定 37 (3) 實驗與模擬比對結果 39 4-2 設計參考相關數據(單變因模擬) 42 (1) 進出風口高度效益 42 (2) 進出風口風速設定效益 43 (3) 接駁扇效益 45 (4) 接駁扇與進出風口高度差效益 46 (5) 接駁扇風速設定效益 47 4-3單變因模擬結果分析 49 第五章 廠房個案研究 51 5-1 廠房條件 52 (1) 物理環境 52 (2) 工作人員 52 (3) 機械設備 52 5-2 實驗內容 53 5-3 問卷調查 54 (1) 熱感覺投票(Thermal Sensation Vote) 54 (2) 熱舒適投票(Thermal Comfort Vote) 55 (3) 熱偏好投票(Thermal Preference Vote) 57 (4) 風感覺投票(Airflow Sensation Vote) 58 (5) 風舒適投票(Airflow Comfort Vote) 60 (6) 風偏好投票(Airflow Preference Vote) 61 5-4 問卷投票結果分析 63 第六章 廠房通風策略模擬 65 6-1 模擬設定與空間模型 65 (1) 15m跨距廠房平面圖與空間模型 65 (2) 30m跨距廠房平面圖與空間模型 67 6-2 15m跨距策略(多變因模擬) 69 6-3 30m跨距策略(多變因模擬) 86 6-4 策略分析 103 第七章 結論與建議 105 7-1 研究結論 105 (1) 單變因模擬 105 (2) 個案研究 105 (3) 多變因模擬 105 7-2 後續研究建議 106 (1) 舒適風速區間 106 (2) 最佳化模擬與機器學習 106 參考文獻 109

    (一) 中文文獻
    1. 朱佳仁(2006),風工程概論,科技圖書
    2. 朱清宇譯,村上周三著(2007),CFD與建築環境設計,中國建築工業出版社

    (二) 英文文獻
    1. ASHRAE Handbook Fundamentals, Chapter 9 Thermal Comfort. 2. (2021).
    2. ANSI/ASHRAE Standard 55-2010. (2010).
    3. Li Huang, Qin Ouyang, Yingxin Zhu, Lingfei Jiang, (2013). A study about the demand for air movement in warm environment, Building and Environment, Volume 61, Pages 27-33.
    4. Hiroko Kubo, Norio Isoda, Hikaru Enomoto-Koshimizu, (1997). Cooling effects of preferred air velocity in muggy conditions, Building and Environment, Volume 32, Issue 3, Pages 211-218.
    5. AIP Conference Proceedings 1971, 030012 (2018)
    6. Wijewardane, Samantha & Jayasinghe, M.T.R.. (2010). Identifying the adaptive opportunities in factory environments for a better thermal comfort -preliminary studies.
    7. Weilin Cui, Guoguang Cao, Qin Ouyang, Yingxin Zhu, (2013). Influence of dynamic environment with different airflows on human performance, Building and Environment, Volume 62, Pages 124-132.
    8. T.T. Chow, K.F. Fong, B. Givoni, Zhang Lin, A.L.S. Chan, (2010). Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment, Building and Environment, Volume 45, Issue 10, Pages 2177-2183.
    9. Laia Ledo Gomis, Massimo Fiorentini, Daniel Daly, Potential and practical management of hybrid ventilation in buildings, (2021). Energy and Buildings, Volume 231.
    10. Zhou, J., Hua, Y., Xiao, Y., Ye, C., Yang, W. (2021). Analysis of Ventilation Efficiency and Effective Ventilation Flow Rate for Wind-driven Single-sided Ventilation Buildings. Aerosol Air Qual. Res. 21.
    11. Pilsitz, Martin. (2011). Determining factors for the architectural development of factory buildings in Budapest between 1860 and 1918. Periodica Polytechnica Architecture. 42. 43.
    12. Apa Loader, R., & Skinner, J. (1991). Management, Construction And Architecture: The Development Of The Model Factory. Construction History, 7, 83–103.
    13. Kaldor, N. (1968). Productivity and Growth in Manufacturing Industry: A Reply. Economica, 35(140), 385–391.
    14. Elhadary, Mohamed I., Abdullah M.Y. Alzahrani, Reda M.H. Aly, and Bahaa Elboshy. (2021). A Comparative Study for Forced Ventilation Systems in Industrial Buildings to Improve the Workers’ Thermal Comfort, Sustainability 13, no. 18: 10267.
    15. B. Fletcher, A.E. Johnson, (1992). Ventilation of small factory units, Journal of Wind Engineering and Industrial Aerodynamics, Volume 40, Issue 3, Pages 293-305.
    16. Fatemi, Nawrose. (2012). Study of Thermal Environment in Relation to Human Comfort in Production Spaces of Ready Made Garments Factories in the Dhaka Region. 10.13140/RG.2.2.33781.09447.
    17. Meese GB, Schiefer RE, Küstner P, Kok R, Lewis MI. Subjective comfort vote and air temperature as predictors of performance in factory workers. Eur J Appl Physiol Occup Physiol. 1986;55(2):195-7. doi: 10.1007/BF00715004. PMID: 3699007.
    18. Listiani Nurul Huda, (2018). IOP Conf. Ser.: Earth Environ. Sci. 126 012143.
    19. Md Mohataz Hossain, Robin Wilson, Benson Lau, Brian Ford, (2019). Thermal comfort guidelines for production spaces within multi-storey garment factories located in Bangladesh, Building and Environment, Volume 157, Pages 319-345.
    20. Sugiono, Sugiono & Fardian, Ryan & Novareza, Oyong. (2017). Thermal comfort study of plastics manufacturing industry in converting process. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska. 26. 401-411.
    21. Wijewardane, Samantha & Jayasinghe, M.T.R.. (2008). Thermal comfort temperature range for factory workers in warm humid tropical climates. Renewable Energy. 33. 2057-2063. 10.1016/j.renene.2007.11.009.
    22. Yau, Yat & Chew, B.T. & Saifullah, A Z A. (2012). Thermal comfort temperature range study for workers in a factory in Malaysia. 10th International Conference on Healthy Buildings 2012. 2. 1218-1223.
    23. Haiying Wang, Lin Sun, Hongyu Guan, Songtao Hu, (2018). Thermal environment investigation and analysis on thermal adaptation of workers in a rubber factory, Energy and Buildings, Volume 158, Pages 1625-1631.
    24. Zhang, Wei & Gao, Zhi & Ding, Wowo. (2015). Outdoor thermal comfort indices: a review of recent studies (in Chinese language). J Environ Health. 32. 836-840.
    25. Li, P., T. Parkinson, G. Brager, S. Schiavon, T. C. T. Cheung, and T. Froese. 2019. A data-driven approach to defining acceptable temperature ranges in buildings. Building and Environment.
    26. Ricardo Forgiarini Rupp, Natalia Giraldo Vásquez, Roberto Lamberts, (2015). A review of human thermal comfort in the built environment, Energy and Buildings, Volume 105, Pages 178-205.
    27. Nicol, F. (2004). Adaptive thermal comfort standards in the hot–humid tropics. Energy and Buildings, 36(7), 628–637.
    28. Haiying Wang, Guodan Liu, Songtao Hu, Chao Liu,
    29. Experimental investigation about thermal effect of colour on thermal sensation and comfort, (2018), Energy and Buildings, Volume 173, Pages 710-718.
    30. Honjo, Tsuyoshi. (2009). Thermal Comfort in Outdoor Environment. Global Environmental Research. 13.
    31. Hongyu Guan, Songtao Hu, Guodan Liu, Lu Zhang, The combined effects of temperature and noise on the comfort perceptions of young people with a normal Body Mass Index, (2020). Sustainable Cities and Society, Volume 54, 101993.
    32. Wenjie Ji, Yingxin Zhu, Bin Cao, Development of the Predicted Thermal Sensation (PTS) model using the ASHRAE Global Thermal Comfort Database, (2020). Energy and Buildings, Volume 211, 109780.
    33. Okayama, Tsuyoshi & Okamura, Kenichi & Park, Jai-Eok & Ushada, Mirwan & Murase, Haruhiko. (2008). A Simulation for Precision Airflow Control using Multi-Fan in a Plant Factory. Environment Control in Biology. 46. 183-194.
    34. Jamshidi, Hamed & Nilsson, Håkan & Chernoray, Valery. (2015). CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments. International Journal of Fluid Machinery and Systems. 8. 113-123.
    35. Fan, Ruiqi & Liu, Huan & Zhou, Shenghan & He, Zhongqun & Zhang, Xin & Liu, Ke & Wang, Jinxiao & Yang, Qichang & Zheng, Yangxia & lu, Wei. (2020). CFD simulation of the airflow uniformity in the plant factory. IOP Conference Series: Earth and Environmental Science. 560.
    36. Zhang, Ying & Kacira, Murat & An, Lingling. (2016). A CFD study on improving air flow uniformity in indoor plant factory system. Biosystems Engineering. 147. 193-205.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE