簡易檢索 / 詳目顯示

研究生: 陳柏村
Chen, Bo-Tsuen
論文名稱: 溫度及應變速率在304L不鏽鋼銲接件抗拉性質與顯微結構上的效應分析
The Effects of Temperature and Strain Rate on Tensile Properties and Microstructural Evolutions of 304L Stainless Steel Welded Joints
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 161
中文關鍵詞: 顯微結構拉伸性質應變速率不鏽鋼溫度
外文關鍵詞: microstructural, Stainless Steel, Tensile Properties, Strain Rate, Temperature
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的主要在探討304L不銹鋼遮蔽金屬電弧銲(SMAW)及惰氣鎢極電弧銲(GTAW)銲接件在不同環境溫度及應變速率下的拉伸塑變行為與微觀組織變化。測試條件分別為環境溫度-100℃、-50℃、25℃、300℃、500℃及應變速率10-1s-1,10-2s-1,10-3s-1。
    實驗結果顯示,304L不銹鋼銲接件的機械性質受溫度及應變速率的影響非常顯著。在溫度影響方面,隨著溫度上升銲接件的降伏強度、塑流應力、抗拉強度、伸長量、加工硬化率、應變速率敏感性會隨之下降,而熱活化體積則有相反的趨勢。在應變速率影響方面,隨著應變速率上升銲接件的降伏強度及應變速率敏感性會隨之上升,而伸長量則有下降的趨勢。比較兩組銲接件得知,GTAW銲接件有較高的塑流應力,較高的加工硬化率,較高的應變速率敏感性係數,及較小的熱活化體積。利用Zerilli-Armstrong 構成方程式以及實驗所得材料參數可以描述304L不銹鋼GTAW與SMAW銲接件在拉伸荷載下之塑性行為,作為工程分析與模擬之用。
    破壞形貌觀察發現,兩組銲接件在低溫-100℃及-50℃下斷裂於銲道;高溫300℃及500℃下斷裂於母材。另外室溫25℃下,低應變速率10-3s-1及10-2s-1斷裂於銲道;高應變速率10-1s-1斷裂於母材。磁性量測結果顯示隨著溫度及應變速率的降低,麻田散鐵相變態量有增加的趨勢,並且母材的麻田散鐵相變態量又會明顯大於銲道。硬度測試結果顯示在固定應變量0.4下,-100℃、-50℃及25℃母材的硬度明顯大於銲道,而300℃和500℃則有相反的趨勢。TEM觀察發現差排密度會隨著溫度上升而下降;隨應變速率增加而增加,另外麻田散鐵相變態量會隨著溫度上升及應變速率增加而下降,而300℃和500℃下銲接件內部已經沒有麻田散鐵組織存在。

    This study investigates the effect of temperature and strain rate on the tensile properties and microstructural evolution of 304L stainless steel GTAW and SMAW joints. Tensile tests are performed at temperatures of -100℃, -50℃, 25℃, 300℃ and 500℃, and strain rates of 10-1s-1, 10-2s-1and 10-3s-1.Experimental results indicate that temperature and strain rate significantly influence mechanical properties. As temperature increases, activation volume increases but yield strength, flow stress, tensile strength, fracture strain, work hardening rate and strain rate sensitivity decrease. As strain rate increases, yield strength and strain rate sensitivity increase, but fracture strain decreases. Flow stress, work hardening rate and strain rate sensitivity are greater for GTAW welds than for SMAW welds. The Zerrilli-Armstrong constitutive equation with the experimentally determined specific material parameters successfully describes the flow of the tested weldments for the range of test conditions. For both weldments, joints fracture in the weld metal at test temperatures between -100℃ and -50℃, but fracture in the base metal at temperatures from 300℃ to 500℃. At 25℃, joints fracture in the weld metal at strain rates of 10-3s-1 and 10-2s-1,but fracture in the base metal at a 10-1s-1 strain rate. Magnetic measurement reveals martensite decreases with increasing temperature and strain rate, and that martensite transformation is greater in base than in weld metal. For 0.4 strain, microhardness measurement reveals base metal is harder at -100℃、-50℃、25℃, while weld metal is harder at 300℃ and 500℃. Microstructural observations show that dislocation density decreases with increasing temperature but increases with increasing strain rate. Martensite decreases with temperature and strain rate increase.

    中文摘要 I ABSTRACT II 總目錄 IV 表目錄 IX 圖目錄 X 符號說明 XVII 第一章 緒論 1 1-1研究背景與動機 1 1-2研究目的 3 1-3研究範疇 3 第二章 文獻探討 4 2-1 沃斯田鐵不銹鋼銲接理論 4 2-1-1 沃斯田鐵不銹鋼銲接特性 4 2-1-2 沃斯田鐵不銹鋼銲接凝固行為 5 2-1-3 肥粒相組織對沃斯田鐵不銹鋼之影響 7 2-1-4 肥粒相含量之影響因素 8 2-1-5 肥粒相含量之估算 9 2-2 惰性氣體鎢極電弧銲之簡介 10 2-3 遮蔽金屬電弧銲之簡介 11 2-4 銲接參數對銲道結構之影響 11 2-5 母材熱影響區與強度之關係 13 2-6 沃斯田鐵不銹鋼變形過程之相變態 13 2-6-1麻田散鐵相變態 14 2-6-2影響麻田散鐵相變態量之因素 15 2-7應變速率敏感性與變形機構 16 2-8應變速率敏感性的測試方法 19 2-9材料變形構成方程式 20 第三章 實驗方法與設備 36 3-1實驗流程 36 3-2實驗材料 36 3-2-1母材 36 3-3-2銲材 37 3-3實驗設備 37 3-3-1銲接設備 37 3-3-2萬能材料試驗機 38 3-3-3微小硬度試驗機 38 3-3-4磁性量測設備 38 3-3-5光學顯微鏡(OM) 39 3-3-6掃瞄式電子顯微鏡(SEM) 39 3-3-7穿透式電子顯微鏡(TEM) 39 3-3-8雙噴射式電解拋光機 39 3-4銲接試驗 40 3-4-1銲接參數設定 40 3-4-2惰性氣體鎢棒電弧銲(GTAW) 40 3-4-3遮蔽金屬棒電弧銲(SMAW) 40 3-4-4銲接件檢驗 41 3-5實驗方法與步驟 41 3-5-1拉伸試驗 41 3-5-2微硬度試驗 42 3-5-3肥粒鐵相量測 42 3-5-4麻鐵散鐵之量測 42 3-5-5試件金相之觀察(OM) 43 3-5-6破斷面之觀察(SEM) 43 3-5-7化學成分分析(EDS) 43 3-5-8穿透式電子顯微鏡(TEM) 43 第四章 結果與討論 52 4-1拉伸前銲接件基本性質分析 52 4-1-1母材與熱影響區金相組織 52 4-1-2銲道金相組織 52 4-1-4肥粒鐵含量分析 54 4-1-4微硬度值分析 55 4-2應力應變曲線之討論 56 4-3加工硬化率之討論 57 4-4應變速率敏感性 58 4-5熱活化體積 59 4-6溫度敏感性 60 4-7變形昇溫量量測 61 4-8材料變形構成方程式 61 4-9拉伸後銲接件微觀組織分析 62 4-9-1麻田散鐵相變態量 62 4-9-2銲接件斷裂位置 63 4-9-3銲道破斷面形貌 65 4-9-4母材破斷面形貌 67 4-9-5拉伸後金相組織 67 4-9-6 拉伸後微硬度 68 4-10 TEM顯微結構分析 68 4-10-1差排 69 4-10-2麻田散鐵 70 第五章 結論 148 參考文獻 150

    1. D. Peckner and I.M. Bernstein, Handbook of Stainless Steels, Mcgraw-Hill Publishing Company, 1977.
    2. R. A. Lula, J. G. Parr and A. Hanson, Stainless Steel, Metals Park, Ohio:American Society for Metals, 1986.
    3. E. F. John, J. C. Jung, F. K. Thomas, and E. K. Gary, “Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties,” Metallurgical Transactions A, Vol. 20A, pp. 2557-2565, 1992.
    4. I. Yutaka, “Effect of Small and Large Amounts of Prestrain at 295K on Tensile Properties at 77K of 304 Stainless Steel,” JSME International Journal, Vol. 35, 1992.
    5. M. G. Stout and P. S. Follansbee, “Strain Rate Sensitivity, Strain Hardening, and Yeild Behaviour of 304L Stainless Steel,” Journal of Engineering Materials and Technology ASME, Vol. 108, pp. 334-353, 1986.
    6. A. Celik and A. Alsaran, “Mechanical and Structural Properties of Simiar and Dissimilar Steel Joints,” Materials Characterization, Vol. 43, pp. 311-318, 1999.
    7. T. Mohandas, G. M. Reddy and M. Naveed, “A Comprative Evolution of Gas Tungsten and Shielded Metal of a Ferrite Stainless Steel,” Journal of Materials Processing Technology, Vol. 94, pp. 133-140, 1999.
    8. G. M. Reddy, T. Mohandas and K. K. Papukutty, “Effect of Welding on the Ballistic Performance of High-Strength Low-Alloy Steel Weldment,” Journal of Materials Processing Technology, Vol. 74, pp. 27-35, 1998.
    9. J. H. Baek, Y. P. Kim, W. S. Kim and Y. T. Kho, “Fracture Toughness and Fatigue Crack Growth Properties of the Base Metal and Weld Metal of a Type 304 Stainless Steel Pipeline for LNG Transmission,” International Journal of Pressure Vessela and Piping, Vol.78, pp. 351-357, 2001.
    10. G. Merckling, C. G. damagna and L. Villa, ”Creep Crack Growth on AISI 316 Base Material Weld metal and Heat Affected Zone, ” Materials at High Temperatures, Vol. 15, pp. 219-224, 1998.
    11. K. Tsuchiya, H. Kawamura and G. Kalinin, “Re-weldability Tests of Irradiated Austenite Stainless Steel by a TIG Welding Method,” Journal of Nuclear Material, Vol. 283-287, pp. 1210-1214, 2000.
    12. W. R. Kanne, M. R. Louthan, D. T. Rankin and M. H. Tosten, “Weld Repair of Irradiated Materials,” Materials Characterization, Vol. 43, pp. 203-214, 1999.
    13. T. Suzuki, A. Kohyama, T. Hirose and M. Narui, “Evaluation of Weld Crack Susceptibility for Neutron Irradiated Stainless Steel,” Journal of Nuclear Material, Vol. 271-272, pp. 179-183, 1999.
    14. T. Takalo, N. Suutala, T. Moisio, “Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transaction A, Vol. 10A, pp. 1173-1181, 1979.
    15. W. T. Delong, G. A. Ostrom, E. R. Szumachowski, “Measurement and Calculation of Ferrite in Stainless-Steel Weld Metal,” Supplement of the Welding Journal, No. 16, pp. 521s-528s, 1956.
    16. E. Zumelza, J. Sepulveda and M. Ibarra, ”Influence of Microstructure on The Mechanical Behavior of Welded 316L SS Joints,” Journal of Materials Processing Technology, Vol. 94, pp. 36-40, 1999.
    17. B. S. Pho, H. U. Hong and S. W. Nam, “The Effect of -ferrite on Fatigue Cracks in 304L Steels,” International Journal of Fatigue, Vol. 22, pp. 683-690, 2000.
    18. T. Yuri, T. Ogata, M. Satio and Y. Hirayama, “Effect of Welding Structure andδ-ferrite on Fatigue Properties for TIG welded Austenitic Stainless Steels at Cryogenic Temperature,” Cryogenics, Vol. 40, pp. 251-259, 2000.
    19. O. Kamiya and K. Kumagai, “Effect of Microstructure on Impact Fracture Behavior of SUS304L SAW Joint at Low Temperture,” Journal of Material Science, Vol. 25, pp. 2017-2024, 1990.
    20. A. O. Kluken, C. N. Mccowam and T. A. Siewert, “Cryogenic Toughness of Austenite Stainless Steel Weld Metals: Effect of Inclusions,” ASM International Press, pp. 45-63, 1992.
    21. P. E. Manning, D. J. Duquette and W. F. Savage, “Technical Note: The Effect of Retained Ferrite on Localized Corrosion in Duplex 304L Stainless Steel,” Welding Journal, Vol. 59, No.9, pp. 260-262, 1980.
    22. M. I. Luppo, A. Hazarabedian and J. O. Garcia, “Effect of Delta Ferrite on Hydrogen Embrittlement of Austensitic Stainless Steel Welds,” Corrosion Science, Vol. 41, pp. 87-103, 1999.
    23. V. Tsakiris and D. V. Edmonds, “Martensite and Deformation Twinning in Austenitic Steels,” Materials Science and Engineering, pp430-436, 1999. 
    24. 曾光宏, “沃斯田鐵不銹鋼銲接性之探討,” 機械技術雜誌, 第160期, pp. 96-103, 1998.
    25. 王振欽, 銲接學, 登文書局, 1987.
    26. J. J. Smith, C. Perry and R. A. Farrar, “Development of a New 304L Austenitic Welding Consumable Containing Tungsten,” Journal of Materiala Science, Vol. 25, pp1275-1284, 1990.  
    27. C. D. Lundin, C. P. Chow, “Hot Cracking Susceptibility of Austenitic Stainless Steel Weld Metals,” Welding Research Council Bulltin, Vol. 289, p. 80, 1983.
    28. T. Takalo, N. Suutala and T. Moisio, “Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transaction A, Vol. 10A, No. 8, pp. 1173-1181, 1979.
    29. N. Suutala, T. Takalo, T. Moisio, “Single-Phase Ferritic Solidification Mode in Austenitic-Ferritic Stainless Steel Welds,” Metallurgical Transaction A, Vol. 10A, No. 8, pp. 1183-1190, 1979.
    30. N. Suutala, T. Takalo, T. Moisio, “Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transaction A, Vol. 11A, No. 8, pp. 717-725, 1980.
    31. N. Suutala, “Effect of Manganese and Nitrogen on the Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transaction A, Vol. 13A, No. 12, pp. 2121-2130, 1982.
    32. N. Suutala, “Effect of Solidification Conditions on the Solidification Mode in Austenitic Stainless Steels,” Metallurgical Transaction A, Vol. 14A, No. 2, pp. 191-197, 1983.
    33. J. A. Brooks, J. C. Williams and A. W. Thompson, “STEM Analysis of Primary Austenite Solidified Stainless Steel Welds, Metallurgical Transactions A, Vol. 14A, No.1, pp. 23-31, Jan. 1983.
    34. J. A. Brooks, J. C. Williams and A. W. Thompson, “Microstructural Origin of the Skeletal Ferrite Morphology of Austenitic Stainless Steel Welds,” Metallurgical Transactions A, Vol. 14A, No. 7, pp. 1271-1281, 1983.
    35. S. Katayama, T. Fujimoto and A. Matsunawa, “Correlation Among Solidification Process, Microstructure, Microsegregation and Solidification Cracking Susceptibility in Stainless Steel Weld Metals,” JWRI Transactions, Vol. 14, No. 1, pp. 123-138, 1985.
    36. J. C. Lippold, W. F. Savage, “Solidification of Austenitic Stainless Steel Weldments II-The Effect of Alloy Composition on Ferrite Morphology,” Welding Journal, Vol. 59, No. 2, pp. 48s-58s, 1980.
    37. F. C. Hull, “Effect of Delta Ferrite on the Hot Cracking of Stainless Steel,” Welding Journal, pp. 399-409, 1967.
    38. C. D. Lundin, W. T. Delong and D. F. Spond, “Ferrute Fissuring Relationship in Austenitic Stainless Steel Weld Metals,” Welding Journal, Vol. 54, pp. 84-246, 1975.
    39. T. Takalo, N. Suutala and T. Moisio, “Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transactions A, Vol. 10, pp. 1173-1181, 1979.
    40. J. A. Brooks, A. W. Thompson and J. C. Williams, “A Fundamental Study of the Beneficial Effects of Delta Ferrite in Reducing Weld Cracking,” Welding Journal, pp. 71-83, Mar. 1984.
    41. W. A. Baeslack and W. F. Savage, “Effect of Nitrogen on the Microstructure and Stress Corrosion Cracking of Stainless Steel Weld Metals,” Welding Journal, pp. 83-90, May 1979. 
    42. ASM International/Handbook Committee, “Fatigue and Fracture,” ASM International Press, Vol. 19, pp. 733-756, 1996.
    43. R. Berggrn, N. C. Cole and G. M. Goodwin, “Structure and Elevated Temperature Properties of Type 308 Stainless Steel Weld Metal with Vary Ferrite Content,” Welding Journal, Vol. 57, pp. 167-174, 1978.
    44. A. L. Schaeffler, “Constitution Diagram for Strainless Steel Weld Metal,” Metal Progess, Vol. 56, pp. 680-680, 1949.
    45. W. T. Deloong and G. A. Ostrom, “Measurement and Calculation of Ferrite in Stainless Steel Weld Metal,” Welding Journal, pp. 281-295, Nov. 1956.
    46. S. A. David, J.M. Vitek and T. L. Hebble “Effect of Rapid Solidification on Stainless Steel Weld Metal Microstructures and Its Implications on the Schaeffler Diagram,” Welding Journal, pp. 289-300, Oct 1987.
    47. J. M. Vitek and S. A. David, “The Effect of Cooling Rate of Ferrite in Type 308 Stainless Steel Weld Metal,” Welding Journal, pp. 95-102, May 1988.
    48. J. W. Elmer, “The Influence of Cooling Rate on the Ferrite Content on Stainless Steel Alloys,” ScD Thesis, The Massachusetts Institute of Technology, Department of Materials Science and Engineer, Cambridge, Mass, 1988.
    49. S. A. David, “Ferrite Morphology and Variations in Ferrite Content on Stainless Steel Welds,” Welding Journal, pp. 63-71, April 1981.
    50. C. D. Lundin and C. P. D. Chou, “Fissuring in the Hazard HAZ Region of Austenitic Stainless Steel Welds,” Welding Journal, pp. 113-118, April 1985.
    51. D. L. Olson, “Prediction of Austenitic Weld Metal Microstructure and Properties,” Welding Journal, Vol. 64, pp. 281-295, 1985.
    52. D. J. Kotecki and T. A. Siewert, “WRC-1992 Constitution Diagram for Stainless Steel Weld Metals: a Modification of the WRC-1988 Diagram,” Welding Journal, Vol. 71, pp. 171-178, 1992.
    53. H. B. Cary, Modern Welding Technology, New Jersy, 4th edn, pp. 34-123, 1998.
    54. D. D. N. Verma and D. R. G. Achar, “Effect of the Number of Passes on the Structure and Properties of Submerged Arc Welds of AISI Type 316L Stainless Steel,” Welding Research Supplement, pp. 147-154, 1987.
    55. K. P. Rao and Y. Srikanth, “Effect of Multipasses on Austenitic Weld Microstructures and Toughness,” Prakt. Metallogr. Vol.30, pp. 365-371, 1993.
    56. M. Onsoien, and R.Peters, ”Effect of Hydrogen in an Arogen GTAW Shieding Gas: Arc Characteristic and Bead Morphology,” Welding Journal, Vol. 74, pp. 10-15, 1995.
    57. G. Lothongkum, E. Viyanit and P. Bhandhubanyong, “Study on the Effects of Pulsed TIG Welding Parameters on Delta-Ferrite Content, Shape Factor and Bead Quality in Orbital Welding of AISI 316L Stainless Steel Plate,” Journal of Materials Processing Technology 110, pp. 233-238, 2001.
    58. G. Lothongkum, P. Chaumbai and P. Bhandhubanyong, “TIG Pulse Welding of 304L Austenitic Stainless Steel in Flat, Vertical and Overhead Positions,” Journal of Materials Processing Technology 89-90, pp. 410-414, 1999.
    59. Y. C. Lin, P. Y. Chen, “Effect of Nitrogen Content and Retained Ferrite on the Residual Stress in Austenitic Stainless Steel Weldments,” Materials Science and Engineering A307, pp. 165-171, 2001.
    60. V. Shankar, T. P. S. Gill, S. L. Mannan and S. Sundaresan, “Effect of Nitrogen Addition on Microstructure and Fusion Zone Cracking in Type 316L Stainless Steel Weld Metals,” Materials Science and Engineering A343, pp.170-181, 2003.
    61. S. Kou, Welding Metallurgy, J. Wiley and Sons, New York, pp.156-282, 1987.
    62. K. Easterling, Introduction to the Physical Metallurgy of Welding, Butterworth Heinemann, p.126, 1992.
    63. S. Shibata and T. Watanabe, “The Effect of Growth in a Heat Affected Zone on the Weld Metal of Austenitic Stainless Steel,” Welding in the World, Vol. 41, pp. 236-239, 1998.
    64. Y. C. Lin and K. H. Lee, “Effect of Preheating on the Residual Stress in Type 304 Stainless Steel Weldment,” Journal of Materials Processing Technology, Vol. 63, pp. 797-801, 1997.
    65. S. W. Yang and J. E. Spruiell, “Cold-worked State and Annealing Behaviour of Austensitic Stainless Steel,” Journal of Materials Science, Vol.17, pp. 677-690, 1982.
    66. R. Lagneborg, “The Martensite Transformation in 18% Cr-8% Ni Steels,” Acta Metallurgica, Vol. 12, pp. 823-843, 1964.
    67. G. B. Olson and M. Cohen, “Kinetics of Strain-Induced Martensitic Nucleation,” Metallurgical Transactions A, Vol. 6A, pp. 791-795, 1975.
    68. P. L. Mangonon and G. Thomas, “The Martensite Phases in 304 Stainless Steel,” Metallurgical Transactions, Vol. 1, pp. 1577-1587, 1970.
    69. K. P. Staudhammer, L. E. Murr and S. S. Hecker, “Nucleation and Evolution of Strain-Induced Martensitic (B.C.C.) Embryos and Substructure in Stainless Steel: A Transmission Electron Microscope Study,” Acta Metall, Vol. 31, pp. 267-274, 1983.
    70. L. E. Murr, K. P. Staudhammer, and S. S. Hecker, “Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II. Microstructural Study,” Metallurgical Transactions A, Vol. 13A, pp. 627-635, 1982.
    71. G. L. Huang, D. K. Matlock and G. Krauss, “Martensite Formation, Strain Rate Sensitivity, and Deformation Behavior of Type 304 Stainless Steel Sheet,” Metallurgical Transactions A, Vol. 20A, pp. 1239-1245, 1989.
    72. P. L. Mangonon and G. T. “Structure and Properties of Thermal-Mechanically Treated 304 Stainless Steel”, Metallurgical Transactions, Vol. 1, pp. 1587-1594, 1970.
    73. D. Bhandarkar, V. F. Zackay, and E. R. Parker, “Stability and Mechanical Properties of Some Metastable Austenitic Steels,” Metallurgical Transactions, Vol.3, pp. 2619-2631, 1972.
    74. S. Ganesh, S. Raman and K. A. Padmanabhan, “Tensile Deformation-Induced Martensitic Transformation in Aisi 304LN Austenitic Stainless Steel,” Journal of Materials Science Letters, Vol. 13, pp. 389-392, 1994.
    75. S. S. Hecker, M. G. Stout, K. P. Staudhammer, and J. L. Smith, “Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior”, Metallurgical Transactions A, Vol. 13A, pp. 619-626, 1982.
    76. V. Talyan, R. H. Wagoner, and J. K. Lee, ”Formability of Stainless Steel,” Metallurgical and Materials Transactions A, Vol. 29A, pp. 2161-2177, 1998.
    77. A. Kumar and L.K. Singhal, “Effect of Strain Rate on Martensitic Transformation During Uniaxial Testing of AISI-304 Stainless Steel,” Metallurgical Transactions A, Vol. 20A, pp. 2857-2859, 1989.
    78. J. R. Patel and M. Cohent, “Criterion for the Action of Applied Stress in the Martensitic Transformation,” ACTA Metallurgica, Vol. 1, pp. 531-538, 1953.
    79. J. D. Campbell, “Dynamic Plasticity-Macrosopic and Microscopic Aspects,” Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.
    80. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, p. 951, 1970.
    81. J. D. Campbell and W. G. Ferguson, “The temperature and strain-rate dependence of the shear strength of mild steel,” The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
    82. A. M. Eleiche and J. D. Campell, Strain-Rate Effect During Reverse Torsional Shear, Exp. Mech., Vol. 16, pp. 281-290, 1976.
    83. J. Harding and J. Huddart, “The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain,” Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
    84. U. S. Lindholm and L. M. Yeakly, “Dynamic deformation of Single and Polycrystalline Aluminum,” Journal of Mechanical and Physics of Solids, Vol. 13, pp. 41-49, 1965.
    85. H. Conrad, “Thermally Activated Deformation of Metals,” Journal of Metals, Vol. 16, pp. 582-588, 1964.
    86. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
    87. J. D. Campbell and A. R. Dowling, “Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
    88. J. Harding, “The Effect of High Strain Rate on Material Properties,” Materials at High Strain Rates, pp. 133-186, 1987.
    89. William F. Hosford and Robert M. Caddell, Metal forming Mechanics and Metallurgy, Prentice Hall, pp. 80-84, 1983.
    90. W. Johnson, Impact Strength of Material, Edward Arnold, pp. 134-135, 1972.
    91. J. D. Campbell, A. M. Eleiche, amd M. C. C. Tsao, “Fundamental Aspects of Structural Alloy Design,” Plenum Publishing Corp, pp. 545-563, 1977.
    92. J. Duffy, Proc. “Workshop on Shear Localization,” Brown Univ. Report MRL-E-127, pp. 19-29, 1981.
    93. H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth,” Interational Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
    94. H. Kobayashi and B. Dodd, “Formation of Adiabatic Shear Bands in Steel and Titanium Twisted at Dynamic Rates,” J. Jpn. Soc. Technol. Plast., Vol. 29, pp. 1152-1158, 1988.
    95. F. J. Zerilli and R. W., “Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
    96. F.J. Zerilli, R.W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels, High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials,” Vol. 48, ASME, New York, pp. 121-126, 1995.
    97. R. K. Ham, “The Determinatin of Dislocation Densities in Thin Films,” The Philosophical Magazine, Vol. 6, pp. 1183-1184, 1961.

    下載圖示 校內:2004-07-04公開
    校外:2004-07-04公開
    QR CODE