| 研究生: |
周家暐 Chou, Jia-Wei |
|---|---|
| 論文名稱: | |
| 指導教授: |
鄭沐政
Cheng, Mu-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 二氧化碳還原反應 、碳碳耦合反應 、氫化反應 、表面變化 |
| 外文關鍵詞: | Carbon dioxide reduction reaction, C-C coupling, Hydrogenation, Surface strain |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球暖化一直以來都是重要的環境議題,為了促進永續發展,近幾十年來,科學家們致力於將溫室氣體重新利用,使其轉變為我們日常所能使用的化合物,而其中最重要的方式為電化學催化使二氧化碳還原成甲烷、乙醇等有機化合物,並且也逐漸地往希望還原反應所得到的產物為較高經濟價值的雙碳甚至多碳產物邁進。若是要產生雙碳(C2)或多碳產物(C2+),勢必要進行碳碳耦合反應(C-C coupling reaction),即只要確定會進行碳碳耦合反應,便能夠產生較高經濟價值的C2+產物,因此本篇論文便以多碳產物的目標進行碳碳耦合反應路徑的研究。
本論文是以量子化學的方式利用動力學與熱力學計算出反應的活化能及反應熱來判斷反應進行的難易程度,在負電壓的環境下使用銅(110)切面進行碳碳耦合的反應探討。首先探討反應初期的碳碳耦合反應以及氫化反應的競爭關係,確立能夠進行的反應路徑為COCO的碳碳耦合,並且找出此二競爭反應的分界電壓為-0.64VSHE,即電壓比分界電壓負時,反應較易進行氫化反應,反之若電壓較分界電壓正時,則反應傾向於進行碳碳耦合反應。
我們選定了銅的另一個(111)切面來和(110)的切面進行比較及吸附能分析,也對其進行相同碳碳耦合路徑探討,發現其最佳路徑為CHOCHO耦合,這和實驗上發現銅(111)是容易產生C1產物的結果相符合,因為銅(111)無法進行COCO耦合,又很容易進行氫化反應,因此一被氫化就容易被直接被氫化成C1產物不太容易停留在CHO,因此進行CHOCHO耦合的機率就變低,導致其不易產生C2產物。
接著我們觀察後發現耦合的反應幾乎都發生在結構的x方向上,於是對x方向進行壓縮及擴張的表面變化,看表面變化是否對耦合反應及氫化反應有所影響,藉此可以達到降低活化能以促進反應或是改變分界電壓使我們有辦法更容易控制電壓及表面來得到我們所希望得到的C1或C2產物。
最後由於在實驗文獻中提到,當負電壓高過一定的值後,雙碳產物仍然有產生,若依照我們分界電壓的概念是無法解釋這一狀況,因此我們推測會有其他碳碳耦合路徑來產生C2產物。我們選定在-1.0VSHE時進行後續產生甲烷的C1路徑探討,並從此路徑中分析出其他六條碳碳耦合路徑,接著從這些路徑進行計算來找到在-1.0VSHE的電壓時若要產生雙碳產物應該進行的碳碳耦合路徑,就能完整確定在任意電壓下的碳碳耦合反應路徑。
Global warming is an important environmental issue in the recent years. Electrochemical catalysis method is one of the common way to reduce carbon dioxide to organic compounds, like methane or ethanol. In the last decade, more and more scientists wanted to get two-carbon or multi-carbon products, which had higher economic value, and this reaction must undergo C-C coupling reaction to get these compounds. Therefore, our research would focus on C-C coupling reaction to get multi-carbon products.
Based on quantum chemistry, this research judged the reaction rate by calculating thermodynamics and kinetics data (ΔG and ΔG‡). We choose Cu(110) surface to do C-C coupling reaction in negative voltage.
First, we find the best reaction pathway is COCO C-C coupling and the boundary voltage of hydrogenation and C-C coupling is -0.64VSHE. Second, we do the same analysis on Cu(111) to compare and analyze the adsorption energy with Cu(110). Third, we compressed and expansion x-direction to influence the ΔG‡ of C-C coupling reaction and the boundary voltage. Therefore, we can easily control surface and voltage to get C1 or C2 product. Finally, we predict that there will be another C-C coupling pathways to produce C2 products when voltage more negative than boundary voltage. Thus, we analyze C1 pathway to find the other six C-C coupling pathways at -1.0VSHE, finding that CHCH coupling is the best pathway. In conclusion, all C-C coupling pathways in any negative voltage have been investigated and the plausible pathways are identified.
1. Albo, J.; Alvarez-Guerra, M.; Castaño, P.; Irabien, A., Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 2015, 17 (4), 2304-2324.
2. Hori, Y.; Wakebe, H.; T., T.; O., K., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833-1939.
3. Mangione, G.; Huang, J.; Buonsanti, R.; Corminboeuf, C., Dual-Facet Mechanism in Copper Nanocubes for Electrochemical CO2 Reduction into Ethylene. J. Phys. Chem. Lett. 2019, 10 (15), 4259-4265.
4. Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Norskov, J. K., Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.
5. Jiang, K.; Huang, Y.; Zeng, G.; Toma, F. M.; Goddard, W. A.; Bell, A. T., Effects of Surface Roughness on the Electrochemical Reduction of CO2 over Cu. ACS Energy Lett. 2020, 5 (4), 1206-1214.
6. Ting, L. R. L.; Piqué, O.; Lim, S. Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B. S., Enhancing CO2 Electroreduction to Ethanol on Copper–Silver Composites by Opening an Alternative Catalytic Pathway. ACS Catalysis 2020, 10 (7), 4059-4069.
7. Gurudayal; Perone, D.; Malani, S.; Lum, Y.; Haussener, S.; Ager, J. W., Sequential Cascade Electrocatalytic Conversion of Carbon Dioxide to C–C Coupled Products. ACS Appl. Energy Mater. 2019, 2 (6), 4551-4559.
8. Jouny, M.; Luc, W.; Jiao, F., General Techno-Economic Analysis of CO2 Electrolysis Systems. Ind. Eng. Chem. Res. 2018, 57 (6), 2165-2177.
9. Song, J.; Song, H.; Kim, B.; Oh, J., Towards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems. Catalysts 2019, 9 (3).
10. Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J., Electrochemical CO2 Reduction: A Classification Problem. Chemphyschem 2017, 18 (22), 3266-3273.
11. Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A., Electrochemical Reduction of CO at a Copper Electrode. J. Phys. Chem. B 1997, 101, 7075-7081.
12. Lindgren, P.; Kastlunger, G.; Peterson, A. A., A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution. ACS Catal. 2020, 10 (1), 121-128.
13. Skulason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jonsson, H.; Norskov, J. K., Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 2007, 9 (25), 3241-3250.
14. Tang, Q.; Jiang, D.-e., Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles. ACS Catal. 2016, 6 (8), 4953-4961.
15. Van den Bossche, M.; Skúlason, E.; Rose-Petruck, C.; Jónsson, H., Assessment of Constant-Potential Implicit Solvation Calculations of Electrochemical Energy Barriers for H2 Evolution on Pt. J. Phys. Chem. C 2019, 123 (7), 4116-4124.
16. Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M., A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2 (10).
17. Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Norskov, J. K.; Chorkendorff, I., The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 2012, 14 (1), 76-81.
18. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5 (5).
19. Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S., Electrochemical Reduction of CO2 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene. ACS Catal. 2017, 7 (3), 1749-1756.
20. Heyes, J.; Dunwell, M.; Xu, B., CO2 Reduction on Cu at Low Overpotentials with Surface-Enhanced in Situ Spectroscopy. J. Phys. Chem. C 2016, 120 (31), 17334-17341.
21. Katayama, Y.; Nattino, F.; Giordano, L.; Hwang, J.; Rao, R. R.; Andreussi, O.; Marzari, N.; Shao-Horn, Y., An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates. J. Phys. Chem. C 2018, 123 (10), 5951-5963.
22. Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H., Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1 (2), 111-119.
23. Kortlever, R.; Shen, J.; Schouten, K. J.; Calle-Vallejo, F.; Koper, M. T., Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6 (20), 4073-82.
24. Jafarzadeh, A.; Bal, K. M.; Bogaerts, A.; Neyts, E. C., Activation of CO2 on Copper Surfaces: The Synergy between Electric Field, Surface Morphology, and Excess Electrons. The Journal of Physical Chemistry C 2020, 124 (12), 6747-6755.
25. Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J., Electrochemical CO2 Reduction: Classifying Cu Facets. ACS Catal. 2019, 9 (9), 7894-7899.
26. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci. 1995, 335, 258-263.
27. Gattrell, M.; Gupta, N.; Co, A., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594 (1), 1-19.
28. Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y., Electrochemical reduction of CO2 at copper single crystal electrodes. J. Electroanal. Chem. 2002, 533, 135-143.
29. Schouten, K. J.; Qin, Z.; Perez Gallent, E.; Koper, M. T., Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134 (24), 9864-9867.
30. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Norskov, J. K.; Jaramillo, T. F.; Chorkendorff, I., Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610-7672.
31. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3 (9), 1311-1315.
32. Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F., Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 4822-4827.
33. Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S., On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (40), E9261-E9270.
34. Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
35. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
36. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev., B Condens. Matter 1993, 47 (1), 558-561.
37. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev., B Condens. Matter 1994, 49 (20), 14251-14269.
38. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
39. L., C. R.; G., D. H., The effect of pressure on the volume and lattice parameters of ruthenium and iron. J. Phys. Chem. Solids 1964, 25, 865-868.
40. Henkelman, G.; Uberuaga, B. P.; Jonsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22), 9901-9904.
41. Henkelman, G.; Jonsson, H., A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111 (15), 7010-7022.
42. Xiao, P.; Sheppard, D.; Rogal, J.; Henkelman, G., Solid-state dimer method for calculating solid-solid phase transitions. J. Chem. Phys. 2014, 140 (17), 174104.
43. Xiao, H.; Cheng, T.; Goddard, W. A., 3rd; Sundararaman, R., Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). J. Am. Chem. Soc. 2016, 138 (2), 483-486.
44. Xiao, H.; Cheng, T.; Goddard, W. A., 3rd, Atomistic Mechanisms Underlying Selectivities in C(1) and C(2) Products from Electrochemical Reduction of CO on Cu(111). J Am Chem Soc 2017, 139 (1), 130-136.
45. Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M., Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. J. Phys. Chem. Lett. 2016, 7 (8), 1471-1477.
46. Steinmann, S. N.; Sautet, P., Assessing a First-Principles Model of an Electrochemical Interface by Comparison with Experiment. J. Phys. Chem. C 2016, 120 (10), 5619-5623.
47. Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G., Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151 (23), 234101.
48. Donald, W. A.; Leib, R. D.; O’Brien, J. T.; Bush, M. F.; Williams, E. R., Absolute Standard Hydrogen Electrode Potential Measured by Reduction of Aqueous Nanodrops in the Gas Phase. J. Am. Chem. Soc. 2008, 130, 3371-3381.
49. Norskov, J. K.; Rossmeisl, J.; A., L.; L., L.; R., K. J.; Bligaard, T.; Jonsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886-17892.
50. Liu, X.; Schlexer, P.; Xiao, J.; Ji, Y.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H.; Ringe, S.; Hahn, C.; Jaramillo, T. F.; Norskov, J. K.; Chan, K., pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 2019, 10 (1), 32.
51. Perez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T., Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. Angew. Chem. Int. Ed. 2017, 56 (13), 3621-3624.
52. Calle-Vallejo, F.; Koper, M. T., Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 2013, 52 (28), 7282-7285.
53. Sakong, S.; Groß, A., Dissociative adsorption of hydrogen on strained Cu surfaces. Surf. Sci. 2003, 525, 107-118.
54. Mavrikakis, M.; Hammer, B.; Nørskov, J. K., Effect of Strain on the Reactivity of Metal Surfaces. Phys. Rev. Lett. 1998, 81, 2819-2822.
55. Chan, Y. T.; Huang, I. S.; Tsai, M. K., Enhancing C-C bond formation by surface strain: a computational investigation for C2 and C3 intermediate formation on strained Cu surfaces. Phys. Chem. Chem. Phys. 2019, 21 (41), 22704-22710.
56. Montoya, J. H.; Peterson, A. A.; Nørskov, J. K., Insights into C-C Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem 2013, 5 (3), 737-742.
57. Shi, C.; Chan, K.; Yoo, J. S.; Nørskov, J. K., Barriers of Electrochemical CO2 Reduction on Transition Metals. Organic Process Research & Development 2016, 20 (8), 1424-1430.
校內:2025-07-01公開