簡易檢索 / 詳目顯示

研究生: 李柏嶔
Lee, Po-Chin
論文名稱: 選擇權評價模式預測公司破產之研究
Options Pricing Model Assessing the Probability of Bankruptcy
指導教授: 林松宏
Lin, Song-Hong
學位類別: 碩士
Master
系所名稱: 管理學院 - 會計學系
Department of Accountancy
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 61
中文關鍵詞: 離散涉險模式財務危機選擇權評價模式Z-ScoreO-Score全額交割股
外文關鍵詞: O-Score, option-pricing models, Z-Score, margin trading, bankruptcy prediction, hazard model
相關次數: 點閱:284下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去許多關於預測破產之研究,都是使用固定期間之預測模式,因此在計算破產機率時會有偏差不一致的情形。許多學者質疑過去研究使用會計資訊來衡量破產機率並不適當,因破產機率為對未來事件可能性之預測,但財務報表上的會計資訊為歷史資訊,對未來之攸關性並不高;且財務報表是基於繼續經營假設下所編製,故在此假設下預測破產之能力是受到限制的。此外,保守原則常使固定資產及無形資產的價值低估,而此低估之誤差會導致計算之槓桿比率高估,並且減少會計資訊評估破產機率之能力。
    本研究根據Hillegeist et al.(2004)為基礎,使用選擇權評價模式,以公司之負債與股價資訊,計算出公司破產機率。而此模型可在任何時點預測公司破產機率,故不同於過去相關研究靜態模型,為可動態預測之模型。
    本研究選取了Z-Score、O-Score及傳統涉險模型,在比較模式的預測效率後,發現選擇權評價模式皆優於其他預測模型。選擇權評價模式之預測能力較佳,故證明其為適當之動態預測模型。

    There are several reasons to question the effectiveness of probability of bankruptcy measures that are based on accounting data. While probability of banrkruptcy estimates are statements about the likelihood of future events, the financial statements are designed to measure past performance and may not be very informative about the future status of the firm. Financial statements are formulated under the going-concern principle, which assumes that firm will not go bankrupt. Thus, their ability to accurately and reliably assess the probability of bankruptcy will be limited by design. Additionally, the conservatism principle often causes asset values to be understated relative to their market values, particularly for fixed and intangibles.
    Based on research of Hillegeist et al.(2004), this research use Option-Pricing Model to assess probability of bankruptcy. The firm’s equity can be viewed as a call option on the value of the firm’s assets. We assess whether the accounting-based measures effectively summarize publicly-available information about the probability of bankruptcy. Our tests show that Option-Pricing Model provides significantly more information than accounting-based measures.

    第一章 緒論……………………………………………………………1 第一節 研究動機與背景………………………………………………1 第二節 研究目的………………………………………………………4 第三節 研究架構………………………………………………………5 第二章 文獻探討………………………………………………………7 第一節 國外研究文獻…………………………………………………7 第二節 國內研究文獻…………………………………………………15 第三章 研究方法………………………………………………………21 第一節 選擇權評價模式與破產機率…………………………………21 第二節 Z-Score及O-Score……………………………………………25 第三節 離散涉險模式…………………………………………………28 第四節 實證模式說明………………………………………………..32 第五節 研究樣本選取………………………………………………..34 第四章 實證結果……………………………………………….…….38 第一節 資料分析……………………………………….…………….38 第二節 選擇權模式與Z-Score及O-Score模式之比較……..……..43 第三節 選擇權評式與傳統涉險模式之比較………………………..47 第四節 合併選擇權模式與Z-Score及O-Score模式………..……..49 第五節 敏感性測試…………………………………………………..51 第五章 研究限制及建議議..................................53 第一節 研究結論..........................................53 第二節 研究限制及建議....................................55 參考文獻..................................................56

    一、 中文文獻
    池千駒,1999,運用財務性、非財務性資訊建立我國上市公司財務預警模式,成功大學會計研究所碩士論文。
    吳建宏,1996,以類神經網路應用於公司財務危機之時點預測,國立成功大學工業管理研究所碩士論文。
    吳清在、謝宛庭,2004,財務困難公司下市櫃之離散時間涉險模式,會計評論,第39期,55-88。
    李致寬,1995,區別分析與類神經網路分析在財務危機預測上之比較,國立成功大學工業管理研究所碩士論文。
    杜詩敏,2003,不同之類神經網路應用於財務危機預測模型之比較,樹德科技大學金融保險研究所碩士論文。
    孟憲群,2001,企業短期償債能力授信評量模式之研究,高雄第一科技大學財務管理系碩士論文。
    林銘琇,1992,財務危機預警模式之實證研究–以台灣地區上市公司為例,淡江大學管理科學研究所碩士論文。
    郭瓊宜,1993,類神經網路在財務危機預警模式之應用,淡江大學管理科學研究所碩士論文。
    陳明賢,1986,財務危機預測之計量分析研究,國立台灣大學商學系碩士論文。
    陳肇榮,1982,運用財務比率預測企業財務危機之實證研究,國立政治大學財政研究所博士論文。
    黃小玉,1988,銀行放款信用評估模式之研究–最佳模式之選擇,淡江大學管理科學研究所碩士論文。
    黃振豐、呂紹強,2000,企業危機預警模式之研究–以財務及非財務因素構建,當代會計,第一卷第一期。
    黃瓊華,1995,現金流量與傳統財務比率預測企業失敗之研究,中華大學研究所碩士論文。
    楊文榮,1997,台灣股票上市公司財務危機預警模式,淡江大學管理科學研究所碩士論文。
    楊浚泓,2001,考慮財務操作與合併報表後之財務危機預警模式,國立中央大學財務管理研究所碩士論文。
    葉銀華、李存修與柯承恩,2002,公司治理與評等系統,台北:商智文化。
    潘玉葉,1990,台灣股票上市公司財務危機預警分析,私立淡江大學管理科學系所博士論文。
    蔡秋田,1995,運用類神經網路預測上市公司營運困難之研究,國立成功大學會計學研究所碩士論文。
    鄭碧月,1997,上市公司營運危機預測模式之研究,朝陽技術學院財務金融所碩士論文。
    儲蕙文,1996,我國上市公司財務預警制度之研究,國立政治大學會計研究所碩士論文。
    蘇文娟,2000,台灣上市企業財務危機預測之實證研究,國立東華大學國際經濟研究所碩士論文。

    二、原文文獻
    Allison, P. 1982. Discrete-time methods for the analysis of event histories. Sociological Methodology: 61-98.
    Allison, P. 1984. Event History Analysis. Beverly Hill: Sage Publications.
    Altman, E. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 6(1):4-19.
    Altman, E. 1993. Corporate Financial Distress and Bankruptcy: A Complete Guide to Predicting & Avoiding Distress and Profiting from Bankrupcy. New York, NY: Wiley.
    Altman, E. I. 1968. Financial Ratios, Discriminant Anylysis, and the Prediction of Corporate Bankruptcy, Journal of Finance 23, 589-609.
    Altman, E. I., R. Haldeman, and P. Narayanan. 1977. ZETA Analysis: A New Model to Identify Bankruptcy Risk of Corporations, Journal of Banking and Finance 10, 29-54.
    Atiya, A. F. 2001. Bankruptcy Prediction for Credit Risk Using Nerual Networks: A Survey and New Results. IEEE Transactions on Neural Networks (12).
    Beaver, W. 1966. Financial Ratios as predictors of failure. Journal of Accounting Research 4 (Supplement):71-111.
    Beaver, W. 1968. Market Prices, Financial Rtios, and the Prediction of Failure. Journal of Accounting Research 8: 179-192.
    Begley, J., J. Ming, and S. Watts. 1996. Bankruptcy Classification Errors in the 1980s: An Empirical Analysis of Altman’s and Ohlson’s Models. Review of Accounting Studies 1, 267-284.
    Black, F. and M. Scholes. 1973. The Pricing of Options and Corporate Liabilities. Journal of Political Economy 7,637-654.
    Blum, M. 1974. Failing Company Discriminant Analysis, Journal of Accounting Research (12): 1-25.
    Chen, K., and J. Lee. 1993. Financial Ratios and Corporate Endurance: A Case of the Oil and Gas Industry. Contemporary Accounting Research 9 (2): 667-694.
    Chen, Y. and S. Y. Hu. 2002. The Controlling Shareholder’s Personal Stock Loan and Firm Performance. 2002 NTU International Conference on Finance, Taipei, Taiwan.
    Cheung, J. 1991. A Review of Option-Pricing Theory in Accounting Research. Journal of Accounting Literature 10, 51-84.
    Coats, P. K. and L. F. Fant. 1991. A Neural Network Approach to Forecasting Financial Distress. Journal of Business Forecasting (10): 9-12.
    Core, J. and C. Schrand. 1999. The Effect of Accounting-Based Debt Covenants on Equity Valuation. Journal of Accounting and Economics 27:1, 1-34.
    Cox, D. R., and D. Oakes. 1984. Analysis of Survival Data.
    Deakin, E. B. 1972. A Discriminant Analysis of Predictors of Failure. Journal of Accounting Research, Spring, 167-179.
    Dhailiwal, D. and S. Reynolds. 1994. The Effect of the Default Risk of Debt on the Earnings Response Coefficient. Accounting Review 69:2, 412-419.
    Dhaliwal, D., K. Lee and N. Fargher. 1992. The Association between Unexpected Earnings and Abnormal Security Returns in the Presence of Financial Leverage. Contemporary Accounting Research 8, 20-41.
    Espahodi, P.1991. Identification of Problem Banks and Binary Choice Models. Journal of Banking and Finance, Vol.15, No.1,53-71.
    Frydman, H., Altman, E. I. and Kao, D. L. 1985. Indroducing Recursive Partitioning for Financial Classification: The Case of Financial Distress. Journal of Finance, Vol. 40, 269-291.
    Grice, J. S. and M. T. Dugan. 2001. The Limitations of Bankruptcy Prediction Models: Some Cautions for the Researcher, Journal Finance and Accounting (117): 151-166.
    Hillegeist, S. A., E. K. Keating, D. P. Cram, and K. G. Lundstedt. 2004. Assessing the Probability of Bankruptcy. Review of Accounting Studies 9, 5-34.
    Lee, T. S. and Y. H. Yeh. 2001.Corporate Governance and Financial Distress: Evidence from Taiwan. 2001 Asia Pacific Finance Association Coference, Bangkok, Thailand.
    Lo, A. W. 1968. Logit versus Discriminant Analysis: A Specification Test and Application to Corporate Bankruptcies. Journal of Econometrics, March, 1968, 151-175.
    Mansah, Y. M. 1984. An Examination of the Stationary of Multivariate Bankruptcy Prediction Models: A Methodological Study. Journal of Accounting Research, 380-395.
    McFadden, D. 1976. A Comment on Discriminant Analysis versus Logit Anylysis. Annals of Economic and Social Measurement 5, 511-523.
    Merton, R. 1974. On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. Journal of Finance 29, 449-470.
    Odom, M. D. and R. Sharda. 1990. A Neural Network Model for Bankruptcy Prediction. IEEE Research (12): 163-168.
    Ohlson, J. 1980. Financial Ratios and the Probabilistic Prediction of Bankrupcy. Journal of Accounting Research 19, 109-131.
    Opler, T. and S.Titman. 1994. Financial Distress and Corporate Performance. Journal of Accounting and Economics 8, 3-35.
    Pagano, M., F. Panetta, and L. Zingales. 1998. Why Do Companies Go Public? An Empirical Analysis. Journal of Finance 53, 27-64.
    Palepu, K. 1986. Predicting Takeover Targer: A Methodological and Empirical Analysis. Journal of Accounting and Economics 8, 3-35.
    Queen, M., and R. Roll. 1987. Firm Mortality: Using Market Indicatos to Predict Survival. Financial Analysis Journal May-June 1987, 9-26.
    Shumway, T. 2001. Forcasting Bankruptcy More Accurately: A Simple Hazard Model. Journal of Business 74(1): 101-124.
    Sloan, R. G. 1996. Do Stock Prices Fully Reflect Information in Cash Flows and Accruals about Future Earnings? The Accounting Review, Volume 71, Issue 3, 289-315.
    Wilson, R. L. and R. Sharda. 1994. Bankruptcy Prediction Using Neural Networks. Decision Support Systems for North-Holland(11): 545-557.
    Zmijewski, M. E. 1984. Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research 22, 59-82.

    下載圖示 校內:2011-06-21公開
    校外:2016-06-21公開
    QR CODE