| 研究生: |
廖廷瑋 Liao, Ting-Wei |
|---|---|
| 論文名稱: |
探討聯結層之作用於可重複使用之聲波微流體晶片 Investigation of coupling layer for reusable SSAW microfluidic chips |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 聲波微流體 、表面駐波 、鈮酸鋰 、聚二甲基矽氧烷 、聯結層 |
| 外文關鍵詞: | standing surface acoustic wave(SSAW), polydimethyl siloxane(PDMS), lithium niobate, coupling layer, n-dodecane |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著生醫產業的蓬勃發展,無論是生物檢測、病原體分析、藥物篩檢、化學合成、食品安檢、環境評鑑,微米粒子的分離或排序都扮演著重要的角色。簡便的分離方式較能進行分析和鑑定,而傳統方法的缺點為,儀器設備昂貴、分析時間冗長、分離步驟繁瑣等都會增加上述流程的難度。相較於其他方式,聲輻射力根據粒子或細胞的大小、密度、壓縮比來進行分離的特性,使其不需要對細胞預先標記或表面改質,可以使細胞在新鮮的狀態下進行分離,且幾乎適合所有種類的微粒。同時,利用表面駐波裝置晶片來控制粒子或細胞移動到壓力節點或反節點,分離和聚焦的過程具有很高的操作性、靈活性和生物相容性。
儘管聲波力擁有許多分離微米粒子上的優點,以往表面駐波晶片都是一次性使用,且晶片製備過程繁瑣、價格昂貴,不具經濟效益,因此本研究目的是讓表面駐波晶片可重複穩定使用,並探討聯結層對粒子聚焦的影響。藉由在微流道和電極晶片之間置入一層聯結層,讓聲波藉由聯結層導入微流道中影響粒子或細胞,我們使用PDMS、水、十二烷作為聯結層的材料,由實驗結果可知使用PDMS時須緊密貼合於壓電材料和微流道裝置之間,才能使聲波導入微流道中,而使用水時在高電壓一段時間下會有揮發或氣泡產生等現象。另外,十二烷具有高沸點、低黏度等特性,可以使聲波在微流道中形成穩定的節點,且能解決使用水所產生的問題,因此使用聯結層的方式可以讓聲波晶片重複再利用,以達到節省成本、增加測試的方便性等目的。
In this study, PDMS film, water, PDMS-water and n-dodecane were used as a coupling layer to contact a reusable disposable SSAW microchips. When using PDMS as a coupling layer, clamping or pressing is needed to ensure PDMS in contact with substrate. When using water or PDMS-water as a coupling layer, bubble generation was observed at high voltage applied(28 Vpp) or longer operation, and stable SSAW could not be formed stably in the channel. When using n-dodecane as a coupling layer, bubble generation was not observed at high voltage applied(41 Vpp) or longer operation(>5 min). The velocity of particle aggregation is close to that when using directly bonded chip. Therefore, using n-dodecane as a coupling layer can make IDT reusable and disposable.
[1] H. Tsutsui, and C.-M. Ho, “Cell separation by non-inertial force fields in microfluidic systems,” Mechanics research communications, vol. 36, no. 1, pp. 92-103, 2009.
[2] S. I. Morehouse, and R. S. Tung, “Statistical evidence for early extinction of reptiles due to the K/T event,” Journal of Paleontology, vol. 17, no. 2, pp. 198-209, 1993.
[3] G. Olivadoti, “Sensing, analyzing, and acting in the first moments of an earthquake,” Analog Dialogue, vol. 35, no. 1, pp. 1-3, 2001.
[4] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proceedings of the London Mathematical Society, vol. 1, no. 1, pp. 4-11, 1885.
[5] R. White, and F. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Applied physics letters, vol. 7, no. 12, pp. 314-316, 1965.
[6] J. Shi, H. Huang, Z. Stratton et al., “Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 9, no. 23, pp. 3354-3359, 2009.
[7] A. Lenshof, M. Evander, T. Laurell et al., “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab on a Chip, vol. 12, no. 4, pp. 684-695, 2012.
[8] C. Campbell, Surface acoustic wave devices for mobile and wireless communications: Academic press, 1998.
[9] B. Matthias, and J. Remeika, “Ferroelectricity in the ilmenite structure,” Physical Review, vol. 76, no. 12, pp. 1886, 1949.
[10] K. Yosioka, and Y. Kawasima, “Acoustic radiation pressure on a compressible sphere,” Acta Acustica united with Acustica, vol. 5, no. 3, pp. 167-173, 1955.
[11] J. Shi, X. Mao, D. Ahmed et al., “Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 8, no. 2, pp. 221-223, 2008.
[12] J. Shi, S. Yazdi, S.-C. S. Lin et al., “Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 11, no. 14, pp. 2319-2324, 2011.
[13] S. I. Morehouse, and R. S. Tung, “Statistical evidence for early extinction of reptiles due to the K/T event,” Journal of Paleontology, vol. 17, no. 2, pp. 198-209, 1993.
[14] T. Saiki, K. Okada, and Y. Utsumi, “Highly efficient liquid flow actuator operated by surface acoustic waves,” Electronics and Communications in Japan, vol. 94, no. 10, pp. 10-16, 2011.
[15] J. Shi, D. Ahmed, X. Mao et al., “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 9, no. 20, pp. 2890-2895, 2009.
[16] X. Ding, S.-C. S. Lin, M. I. Lapsley et al., “Standing surface acoustic wave (SSAW) based multichannel cell sorting,” Lab on a Chip, vol. 12, no. 21, pp. 4228-4231, 2012.
[17] L. Schmid, A. Wixforth, D. A. Weitz et al., “Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber,” Microfluidics and nanofluidics, vol. 12, no. 1-4, pp. 229-235, 2012.
[18] G. G. Stokes, “On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids,” Transactions of the Cambridge Philosophical Society, vol. 8, 1880.
[19] Y. Chen, and J. Ma, “Random noise attenuation by fx empirical-mode decomposition predictive filtering,” Geophysics, vol. 79, no. 3, pp. V81-V91, 2014.
[20] X. Du, Y. Q. Fu, J. Luo et al., “Microfluidic pumps employing surface acoustic waves generated in ZnO thin films,” Journal of Applied Physics, vol. 105, no. 2, pp. 024508, 2009.
[21] I. Leibacher, S. Schatzer, and J. Dual, “Impedance matched channel walls in acoustofluidic systems,” Lab on a Chip, vol. 14, no. 3, pp. 463-470, 2014.
[22] K. Uchino, Ferroelectric Devices 2nd Edition: CRC press, 2009.
[23] M. Li, W. Li, J. Zhang et al., “A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation,” Journal of Physics D: Applied Physics, vol. 47, no. 6, pp. 063001, 2014.
[24] D. Di Carlo, D. Irimia, R. G. Tompkins et al., “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18892-18897, 2007.
[25] S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar et al., “Inertial microfluidics for continuous particle separation in spiral microchannels,” Lab on a Chip, vol. 9, no. 20, pp. 2973-2980, 2009.
[26] T. Müller, G. Gradl, S. Howitz et al., “A 3-D microelectrode system for handling and caging single cells and particles,” Biosensors and Bioelectronics, vol. 14, no. 3, pp. 247-256, 1999.
[27] J. Nilsson, M. Evander, B. Hammarström et al., “Review of cell and particle trapping in microfluidic systems,” Analytica chimica acta, vol. 649, no. 2, pp. 141-157, 2009.
[28] M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Analytical chemistry, vol. 76, no. 18, pp. 5465-5471, 2004.
[29] M. Yamada, and M. Seki, “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics,” Lab on a Chip, vol. 5, no. 11, pp. 1233-1239, 2005.
[30] F. Guo, Y. Xie, S. Li et al., “Reusable acoustic tweezers for disposable devices,” Lab on a Chip, vol. 15, no. 24, pp. 4517-4523, 2015.
[31] N. R. Coordinators, “Database resources of the national center for biotechnology information,” Nucleic acids research, vol. 41, no. D1, pp. D8-D20, 2012.
[32] Q. Zeng, H. Chan, X. Zhao et al., “Enhanced particle focusing in microfluidic channels with standing surface acoustic waves,” Microelectronic engineering, vol. 87, no. 5-8, pp. 1204-1206, 2010.
[33] Z. Ma, D. J. Collins, and Y. Ai, “Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave,” Analytical chemistry, vol. 88, no. 10, pp. 5316-5323, 2016.
[34] R. W. Rambach, V. Skowronek, and T. Franke, “Localization and shaping of surface acoustic waves using PDMS posts: application for particle filtering and washing,” RSC Advances, vol. 4, no. 105, pp. 60534-60542, 2014.