簡易檢索 / 詳目顯示

研究生: 廖廷瑋
Liao, Ting-Wei
論文名稱: 探討聯結層之作用於可重複使用之聲波微流體晶片
Investigation of coupling layer for reusable SSAW microfluidic chips
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 聲波微流體表面駐波鈮酸鋰聚二甲基矽氧烷聯結層
外文關鍵詞: standing surface acoustic wave(SSAW), polydimethyl siloxane(PDMS), lithium niobate, coupling layer, n-dodecane
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著生醫產業的蓬勃發展,無論是生物檢測、病原體分析、藥物篩檢、化學合成、食品安檢、環境評鑑,微米粒子的分離或排序都扮演著重要的角色。簡便的分離方式較能進行分析和鑑定,而傳統方法的缺點為,儀器設備昂貴、分析時間冗長、分離步驟繁瑣等都會增加上述流程的難度。相較於其他方式,聲輻射力根據粒子或細胞的大小、密度、壓縮比來進行分離的特性,使其不需要對細胞預先標記或表面改質,可以使細胞在新鮮的狀態下進行分離,且幾乎適合所有種類的微粒。同時,利用表面駐波裝置晶片來控制粒子或細胞移動到壓力節點或反節點,分離和聚焦的過程具有很高的操作性、靈活性和生物相容性。
    儘管聲波力擁有許多分離微米粒子上的優點,以往表面駐波晶片都是一次性使用,且晶片製備過程繁瑣、價格昂貴,不具經濟效益,因此本研究目的是讓表面駐波晶片可重複穩定使用,並探討聯結層對粒子聚焦的影響。藉由在微流道和電極晶片之間置入一層聯結層,讓聲波藉由聯結層導入微流道中影響粒子或細胞,我們使用PDMS、水、十二烷作為聯結層的材料,由實驗結果可知使用PDMS時須緊密貼合於壓電材料和微流道裝置之間,才能使聲波導入微流道中,而使用水時在高電壓一段時間下會有揮發或氣泡產生等現象。另外,十二烷具有高沸點、低黏度等特性,可以使聲波在微流道中形成穩定的節點,且能解決使用水所產生的問題,因此使用聯結層的方式可以讓聲波晶片重複再利用,以達到節省成本、增加測試的方便性等目的。

    In this study, PDMS film, water, PDMS-water and n-dodecane were used as a coupling layer to contact a reusable disposable SSAW microchips. When using PDMS as a coupling layer, clamping or pressing is needed to ensure PDMS in contact with substrate. When using water or PDMS-water as a coupling layer, bubble generation was observed at high voltage applied(28 Vpp) or longer operation, and stable SSAW could not be formed stably in the channel. When using n-dodecane as a coupling layer, bubble generation was not observed at high voltage applied(41 Vpp) or longer operation(>5 min). The velocity of particle aggregation is close to that when using directly bonded chip. Therefore, using n-dodecane as a coupling layer can make IDT reusable and disposable.

    中文摘要 I Extended Abstract II 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1前言 1 1.2研究動機與方法 2 第二章 文獻回顧 3 2.1 表面聲波 3 2.1.1 表面聲波的源起 3 2.1.2 壓電材料 4 2.1.3 表面駐波聚焦原理 9 2.1.4 表面駐波聚焦的應用 16 2.2 可重複利用聲波元件之技術 20 2.2.1 聯結層 20 2.2.2 聲衰減 22 2.2.3 不同微流道、微流場及連接層組合對聲波物理因子的影響 23 2.3 粒子分離技術 25 第三章 實驗材料與方法 32 3.1實驗藥品與材料 32 3.2 實驗儀器 36 3.3表面聲波元件之製作 46 3.3.1 指叉狀電極的製作 46 3.3.2 微流道複合裝置的製作 51 3.3.3 可重複利用之表面聲波元件的測試 59 3.4 接觸角測試 60 第四章 結果與討論 61 4.1直接貼合SSAW聚焦影響參數 61 4.2不同聯結層材料對SSAW聚焦效果的影響 65 4.2.1 PDMS 65 4.2.2 水作為聯結層 68 4.2.3以PDMS墊片限制水膜範圍之複合聯結層 74 4.2.3.1水膜之填充 74 4.2.3.2 不同流道寬度之聚焦測試 78 4.2.3.3 水膜寬度為變數之影響 80 4.2.4 十二烷 83 4.2.5 複合聯結層與十二烷膜之比較 88 4.3 可重複利用聲波元件 90 第五章 結論 92 第六章 未來工作與建議 93 第七章 參考文獻 94

    [1] H. Tsutsui, and C.-M. Ho, “Cell separation by non-inertial force fields in microfluidic systems,” Mechanics research communications, vol. 36, no. 1, pp. 92-103, 2009.
    [2] S. I. Morehouse, and R. S. Tung, “Statistical evidence for early extinction of reptiles due to the K/T event,” Journal of Paleontology, vol. 17, no. 2, pp. 198-209, 1993.
    [3] G. Olivadoti, “Sensing, analyzing, and acting in the first moments of an earthquake,” Analog Dialogue, vol. 35, no. 1, pp. 1-3, 2001.
    [4] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proceedings of the London Mathematical Society, vol. 1, no. 1, pp. 4-11, 1885.
    [5] R. White, and F. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Applied physics letters, vol. 7, no. 12, pp. 314-316, 1965.
    [6] J. Shi, H. Huang, Z. Stratton et al., “Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 9, no. 23, pp. 3354-3359, 2009.
    [7] A. Lenshof, M. Evander, T. Laurell et al., “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab on a Chip, vol. 12, no. 4, pp. 684-695, 2012.
    [8] C. Campbell, Surface acoustic wave devices for mobile and wireless communications: Academic press, 1998.
    [9] B. Matthias, and J. Remeika, “Ferroelectricity in the ilmenite structure,” Physical Review, vol. 76, no. 12, pp. 1886, 1949.
    [10] K. Yosioka, and Y. Kawasima, “Acoustic radiation pressure on a compressible sphere,” Acta Acustica united with Acustica, vol. 5, no. 3, pp. 167-173, 1955.
    [11] J. Shi, X. Mao, D. Ahmed et al., “Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 8, no. 2, pp. 221-223, 2008.
    [12] J. Shi, S. Yazdi, S.-C. S. Lin et al., “Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 11, no. 14, pp. 2319-2324, 2011.
    [13] S. I. Morehouse, and R. S. Tung, “Statistical evidence for early extinction of reptiles due to the K/T event,” Journal of Paleontology, vol. 17, no. 2, pp. 198-209, 1993.
    [14] T. Saiki, K. Okada, and Y. Utsumi, “Highly efficient liquid flow actuator operated by surface acoustic waves,” Electronics and Communications in Japan, vol. 94, no. 10, pp. 10-16, 2011.
    [15] J. Shi, D. Ahmed, X. Mao et al., “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 9, no. 20, pp. 2890-2895, 2009.
    [16] X. Ding, S.-C. S. Lin, M. I. Lapsley et al., “Standing surface acoustic wave (SSAW) based multichannel cell sorting,” Lab on a Chip, vol. 12, no. 21, pp. 4228-4231, 2012.
    [17] L. Schmid, A. Wixforth, D. A. Weitz et al., “Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber,” Microfluidics and nanofluidics, vol. 12, no. 1-4, pp. 229-235, 2012.
    [18] G. G. Stokes, “On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids,” Transactions of the Cambridge Philosophical Society, vol. 8, 1880.
    [19] Y. Chen, and J. Ma, “Random noise attenuation by fx empirical-mode decomposition predictive filtering,” Geophysics, vol. 79, no. 3, pp. V81-V91, 2014.
    [20] X. Du, Y. Q. Fu, J. Luo et al., “Microfluidic pumps employing surface acoustic waves generated in ZnO thin films,” Journal of Applied Physics, vol. 105, no. 2, pp. 024508, 2009.
    [21] I. Leibacher, S. Schatzer, and J. Dual, “Impedance matched channel walls in acoustofluidic systems,” Lab on a Chip, vol. 14, no. 3, pp. 463-470, 2014.
    [22] K. Uchino, Ferroelectric Devices 2nd Edition: CRC press, 2009.
    [23] M. Li, W. Li, J. Zhang et al., “A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation,” Journal of Physics D: Applied Physics, vol. 47, no. 6, pp. 063001, 2014.
    [24] D. Di Carlo, D. Irimia, R. G. Tompkins et al., “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18892-18897, 2007.
    [25] S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar et al., “Inertial microfluidics for continuous particle separation in spiral microchannels,” Lab on a Chip, vol. 9, no. 20, pp. 2973-2980, 2009.

    [26] T. Müller, G. Gradl, S. Howitz et al., “A 3-D microelectrode system for handling and caging single cells and particles,” Biosensors and Bioelectronics, vol. 14, no. 3, pp. 247-256, 1999.
    [27] J. Nilsson, M. Evander, B. Hammarström et al., “Review of cell and particle trapping in microfluidic systems,” Analytica chimica acta, vol. 649, no. 2, pp. 141-157, 2009.
    [28] M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Analytical chemistry, vol. 76, no. 18, pp. 5465-5471, 2004.
    [29] M. Yamada, and M. Seki, “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics,” Lab on a Chip, vol. 5, no. 11, pp. 1233-1239, 2005.
    [30] F. Guo, Y. Xie, S. Li et al., “Reusable acoustic tweezers for disposable devices,” Lab on a Chip, vol. 15, no. 24, pp. 4517-4523, 2015.
    [31] N. R. Coordinators, “Database resources of the national center for biotechnology information,” Nucleic acids research, vol. 41, no. D1, pp. D8-D20, 2012.
    [32] Q. Zeng, H. Chan, X. Zhao et al., “Enhanced particle focusing in microfluidic channels with standing surface acoustic waves,” Microelectronic engineering, vol. 87, no. 5-8, pp. 1204-1206, 2010.
    [33] Z. Ma, D. J. Collins, and Y. Ai, “Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave,” Analytical chemistry, vol. 88, no. 10, pp. 5316-5323, 2016.
    [34] R. W. Rambach, V. Skowronek, and T. Franke, “Localization and shaping of surface acoustic waves using PDMS posts: application for particle filtering and washing,” RSC Advances, vol. 4, no. 105, pp. 60534-60542, 2014.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE