簡易檢索 / 詳目顯示

研究生: 林暉
Lin, Hui
論文名稱: 應用氧化鋅奈米結構於反置有機發光二極體之特性改善
Performance Improvement of Inverted Organic Light-Emitting-Diodes Using ZnO Nanostructure
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 61
中文關鍵詞: 氧化鋅奈米柱陣列有機發光二極體電子注入反置結構
外文關鍵詞: ZnO nanorod arrays, organic light emitting diode, electron injection, inverted structure
相關次數: 點閱:111下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出以磁控式濺鍍系統成長氧化鋅薄膜作為反置有機發光二極體中的電子注入層,並以該氧化鋅薄膜為晶種層,成長氧化鋅奈米柱陣列於反置結構之有機發光二極體中,藉由氧化鋅奈米柱陣列形貌減少有機主動層與氧化鋅層間的全反射增進出光,且由於氧化鋅奈米柱陣列增加有機主動層與氧化鋅層間的接觸面積,增加電子由氧化鋅注入至有機層的數量,有效改善反置有機發光二極體電子注入困難的問題,大幅提高元件的發光強度及發光效率。相較於無氧化鋅奈米柱陣列的基本反置有機發光二極體,本研究中加入氧化鋅奈米柱陣列長度為65 nm的反置有機發光二極體其最高發光強度提升至10814 cd/m2,而最大發光效率提升至1.8 cd/A。

    In this work, the ZnO film was applied to inverted organic light emitting diode(IOLED) as electron injection layer using RF sputter, and the ZnO nanorod array was insertes into the IOLED to improve the efficiency of the IOLED. By inserting the ZnO nanorod array, the total reflection of the interface of the active layer and the ZnO layer will be reduced due to the morphology of ZnO nanorod array, hence it will improve the light output of the IOLED. Moreover, the ZnO nanorod array increase the contact area between the active layer and the ZnO layer, and increase the amount of injected electrons, that will ameliorate the problem that the electron injection is difficult in this IOLED, and substantial improve the luminance and the current efficiency of the IOLED. Compare to the device without ZnO nanorod array, the maximum luminance was increased to 10814 cd/m2 and the current efficiency was increased to 1.8 cd/A for the IOLED with 65-nm-long ZnO nanorod array.

    摘要 I Abstract II 致謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 有機發光顯示器發展與應用 2 1.3 研究動機與目的 3 第二章 原理 7 2.1 有機發光二極體元件結構 7 2.2 有機發光二極體操作原理 10 2.3 有機材料的吸收與放射 10 2.4 元件電流注入機制 12 2.5 氧化鋅奈米柱陣列成長原理 15 第三章 實驗方法與步驟 21 3.1 實驗架構 21 3.2 實驗材料 21 3.2-1 電子注入層材料 21 3.2-2 主動層材料 22 3.2-3 電洞注入層材料 22 3.2-4 金屬電極材料 22 3.3 實驗流程 23 3.3-1 ITO基板圖案化 23 3.3-2 奈米柱陣列製備 24 3.3-3 高分子發光二極體元件製作 25 3.4 量測儀器 26 3.4-1 掃描式電子顯微鏡 26 3.4-2 UV-VIS-NIR光譜分析儀 27 3.4-3 輝度量測系統 27 第四章 量測分析與結果討論 34 4.1 奈米柱陣列特性量測 34 4.1-1 表面形貌觀測 34 4.1-2 穿透率量測 35 4.2 高分子發光二極體基本特性量測 35 4.2-1 主動層發光頻譜特性 36 4.2-2 氧化鋅薄膜成長腔壓對元件之電性影響 36 4.2-3 氧化鋅薄膜成長腔壓對元件之發光特性影響 37 4.2-4 氧化鋅薄膜成長腔壓對元件之發光效率影響 38 4.2-5 氧化鋅薄膜成長腔壓與有機主動層界面特性探討 39 4.2-6 氧化鋅薄膜厚度對元件之電性影響 40 4.2-7 氧化鋅薄膜厚度對元件之發光特性影響 40 4.2-8 氧化鋅薄膜厚度對元件之發光效率影響 41 4.3 具氧化鋅奈米柱陣列結構之元件特性量測 41 4.3-1 氧化鋅奈米柱長度對元件之電性影響 42 4.3-2 氧化鋅奈米柱長度對元件之發光特性影響 42 4.3-3 有機主動層包覆氧化鋅奈米柱觀測 43 4.3-4 氧化鋅奈米柱長度對元件之發光效率影響 44 第五章 結論 55 參考文獻 57

    [1]M. Pope, H. Kallmann and P. Magnante, “ Electron spin resonance study of partially reduces vanadium pentoxide”, J. Chem. Phys., 38, 2024 (1963).
    [2]C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., 51, 913 (1987).
    [3]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, “Light emitting diode based on conjugated polymer”, Nature, 347, 539 (1990).
    [4]D. Braun and A. J. Heeger, “Visible light emission from semiconducting polymer diodes“, Appl. Phys. Lett., 58, 1982 (1991).
    [5]Yong Cao, Gang Yu, Ian D. Parker and Alan J. Heeger, “Ultrathin layer alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes”, J. Appl. Phys., 88, 3618 (2000).
    [6]Nakamura, T. Tada, M. Mizukami and S. Yagyu, “Efficient electrophosphorescent polymer light-emitting devices using a Cs/ Al cathode”, Appl. Phys. Lett., 84, 130 (2004).
    [7]L. S. Hung, C. W. Tang and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/ LiF electrode”, Appl. Phys. Lett., 70, 152 (1997).
    [8]Pongpun Piromreun, HwanSool Oh, Yulong Shen, George G. Malliaras, J. Campbell Scott and Phil J. Brock, “Role of CsF on electron injection into a conjugated polymer”, Appl. Phys. Lett., 77, 2403 (2000).
    [9]J. Huang, Z. Xu and Y. Yang, “Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate”, Adv. Funct. Mater., 17, 1966 (2007).
    [10]H. Aziz, Z. Popovic, C. P. Tripp, N. X. Hu, A. M. Hor, and G. Xu, “Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes”, Appl. Phys. Lett., 72, 2642 (1998).
    [11]Y. F. Liew, H. Aziz, N. X. Hu, H. S. O. Chan and Z. Popovic, “Investigation of the sites of dark spots in organic light-emitting devices”, Appl. Phy. Lett., 77, 2650 (2000).
    [12]K. Morii, M. Ishida, T. Takashima, T. Shimoda, Q. Wang, M. K. Nazeeruddin and M. Graetzel, “Encapsulation-free hybrid organic-inorganic light emitting diodes”, Appl. Phy. Lett., 89, 183510 (2006).
    [13]S. A. Haque, S. Koops, N. Tokmoldin, J. R. Durrant, J. Hung, D. C. Bradley and E. Palomares, “Hybrid organic-inorganic light emitting diodes”, Adv. Mater., 19, 683 (2007).
    [14]T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x- ray photoelectron spectroscopy and work-function measurements”, J. Appl. Phys., 73, 4344 (1993).
    [15]C. Shen, I. G. Hill, and A. Kahn, “Role of electrode contamination in electron injection at Mg:Ag/ Alq3 interfaces”, Adv. Mater., 11, 1523 (1999).
    [16]D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti and A. B. Holmes, “Conjugated polymer light‐emitting diodes on silicon substrates”, Appl. Phys. Lett., 65, 2636 (1994).
    [17]T. Miyashita, S. Naka, H. Okada and H. Onnagawa, “Dual Drive and Emission Panel”, Jpn. J. Appl. Phys., 44, 3682 (2005).
    [18]K. Morii, M. Ishida, T. Takashima, T. Shimoda, Q. Wang, M. K. Nazeeruddin and M. Graetzel, “Encapsulation-free hybrid organic-inorganic light-emitting diodes”, Appl. Phys. Lett., 89, 183510 (2006).
    [19]S. A. Haque, S. Koops, N. Tokmoldin, J. R. Durrant, J. Huang, D. D. C. Bradley and E. Palomares, “A light-emitting diode based upon a three-component hybrid inorganic/organic nanocomposite film”, Adv. Mater., 19 , 683 (2007).
    [20]J. L. G. Fierro , Metal Oxides–Chemistry and Applications , CRC Press, Taylor & Francis Group (2006).
    [21]M. A. Lambert and P. Mark, “Current Injection in Solids”, New York: Academic (1970).
    [22]D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, “Light emitting diodes with ZnO current spreading layers deposited from a low temperature aqueous solution”, Appl. Phys. Express, 2, 042101 (2009).
    [23]M. K. Lee, C. L. Ho, and P. C. Chen, “Light extraction efficiency enhancement of GaN blue LED by liquid - phase - deposited ZnO rods”, IEEE Photon. Technol. Lett., 20, 252 (2008).
    [24]K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution”, Appl. Phys. Lett., 94, 071118 (2009).
    [25]J. L. Bredas and G. B. Street, “Polarons, bipolarons, and soliton in conducting polymers”, Accounts Chem. Res., 10, 309 (1985).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE