簡易檢索 / 詳目顯示

研究生: 謝康明
Hartono, Hendrik
論文名稱: 以熱氧化法於銅線上生成氧化銅奈米線
Growth of Copper Oxide Nanowires on a Copper Wire via Thermal Oxidation
指導教授: 吳明勳
Wu, Ming-Hsun
林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 92
中文關鍵詞: 氧化銅奈米線熱氧化法銅線熱重分析掃描電子顯微鏡能量色散X-射線光譜
外文關鍵詞: Copper oxide nanowire, thermal oxidation, copper wire, thermogravimetric analysis, SEM-EDS
相關次數: 點閱:106下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究,熱氧化法的溫度,時間以及氧氣濃度對氧化銅奈米線生長的影響在銅線表面上進行了研究。利用掃描式電子顯微鏡(SEM)拍攝氧化銅奈米線圖像的密度,直徑與長度。氧化過程中的增重在熱重量分析進行定量。在氧化銅增重數據發現,在溫度低於500 oC,銅線表面上的氧化銅奈米線生長相對緩慢,氧化速率高於此溫度時漸漸增加。SEM照片顯示,氧化銅奈米線較長在高溫,但是,奈米線的密度比較低在600 oC。另一方面,氧化時間沒有顯著影響奈米線的長度,但影響奈米線密度的分佈。使用不同的氧氣濃度奈米線的幾何形狀沒有顯著變化。熱重分析獲得銅線重量增加服從拋物線氧化速率法。阿瑞尼斯曲線能大致被分為三個區域:高溫區域(550 oC到700 oC),中溫度區(400 oC到550 oC),以及低溫度區域(325 oC到400 oC)。
    氧化銅還原為銅在化學鏈燃燒應用的初步結果已獲得在本研究。在本實驗顯示化學放熱反應發生在約700 oC。這可能是化學鏈燃燒良好的條件。

    In this study, the influences of temperature, duration and oxygen concentration on the growth of copper oxide nanowires on the surface of a copper wire through thermal oxidation method were studied. Scanning electron microscope (SEM) images were taken to reveal the density, diameter and length of the nanowires. The weight gain during the oxidation process were quantified with thermogravimetric analysis. It was found that nanowire growth on the copper wire surface was relatively slow for temperatures below 500 oC, and the oxidation rate increased monolithically above this threshold temperature. SEM images showed that the CuO nanowires were longer at high temperatures, however, the density of the nanowires was lower at 600 oC comparing to 400 oC and 500 oC. Oxidation duration, on the other hand, did not significantly affect the length of nanowire, but the distribution of the nanowire density. There were no significant changes on nanowires geometry using different oxygen concentration. Weight gain of Cu wire was obtained from thermogravimetric analysis and obeys parabolic oxidation rate law. The Arrhenius plots are able to be roughly classified into three regions: high temperature region (550 oC to 700 oC), intermediate temperature region (400 oC to 550 oC), and low temperature region (325 oC to 400 oC).

    Abstract i 摘要 ii Acknowledgements iii Table of Contents iv List of Tables vi List of Figures vii Nomenclature xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.3 Objectives 15 1.4 Thesis Outline 15 Chapter 2 Methodology 16 2.1 Overview 16 2.2 Heating Furnace 16 2.3 Thermogravimetric Analyzer (TGA) 18 2.4 Scanning Electron Microscope (SEM) 23 2.5 Energy Dispersive X-ray Spectrometer (EDS) 23 2.6 X-ray Diffractometer (XRD) 25 2.7 Copper Wires and Sample Preaparation 26 2.8 Methods for Obtaining NW Geometry and Density 27 Chapter 3 Results and Discussion 30 3.1 Influence of Oxidation Temperature 30 3.1.1 Surface Morphology 30 3.1.2 Material Characterization 39 3.2 Influence of Oxidation Duration 39 3.2.1 Surface Morphology 39 3.2.2 Material Characterization 45 3.3 Influence of Oxygen Concentration 51 3.3.1 Surface Morphology 51 3.4 Oxidation Kinetics of Copper 51 3.4.1 TGA Measurements 51 3.4.2 Results 59 3.5 Summary 63 Chapter 4 Conclusions and Future Works 64 4.1 Conclusions 64 4.2 Future Works 65 References 66 Appendix 73 A. Preliminary Results of Copper Oxide Reduction for Chemical-Looping Combustion. 73 B. Nanowire Peak Finder Source Code 83

    [1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, vol. 354, no. 6348, pp. 56-58, Nov 7, 1991.
    [2] C. Dekker, “Carbon Nanotubes as Molecular Quantum Wires,” Physics Today, vol. 52, no. 5, pp. 22, 1999.
    [3] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Accounts of Chemical Research, vol. 32, no. 5, pp. 435-445, 1999.
    [4] X. Chen, and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem Rev, vol. 107, no. 7, pp. 2891-959, Jul, 2007.
    [5] S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati, A. Kock, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, and R. Resel, “Gas Sensing Properties of Novel Cuo Nanowire Devices,” Sensors and Actuators B-Chemical, vol. 187, pp. 50-57, Oct, 2013.
    [6] D. Zappa, E. Comini, R. Zamani, J. Arbiol, J. R. Morante, and G. Sberveglieri, “Preparation of Copper Oxide Nanowire-Based Conductometric Chemical Sensors,” Sensors and Actuators B: Chemical, vol. 182, pp. 7-15, 2013.
    [7] A. H. Jayatissa, K. Guo, and A. C. Jayasuriya, “Fabrication of Cuprous and Cupric Oxide Thin Films by Heat Treatment,” Applied Surface Science, vol. 255, no. 23, pp. 9474-9479, Sep 15, 2009.
    [8] A. Ogwu, T. Darma, and E. Bouquerel, “Electrical Resistivity of Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering,” Journal of achievements in materials and manufacturing engineering, vol. 24, no. 1, pp. 172-177, 2007.
    [9] M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, “Nanostructured Carbon-Metal Oxide Composite Electrodes for Supercapacitors: A Review,” Nanoscale, vol. 5, no. 1, pp. 72-88, Jan 7, 2013.
    [10] M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, “A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides,” Sensors (Basel), vol. 10, no. 5, pp. 4855-86, 2010.
    [11] L. P. Zhou, B. X. Wang, X. F. Peng, X. Z. Du, and Y. P. Yang, “On the Specific Heat Capacity of Cuo Nanofluid,” Advances in Mechanical Engineering, vol. 2, no. 0, pp. 172085-172085, 2015.
    [12] S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. C. Hung, S. J. Young, and B. R. Huang, “A Cuo Nanowire Infrared Photodetector,” Sensors and Actuators A: Physical, vol. 171, no. 2, pp. 207-211, 2011.
    [13] C. Rossi, K. Zhang, D. Esteve, P. Alphonse, P. Tailhades, and C. Vahlas, “Nanoenergetic Materials for Mems: A Review,” Journal of Microelectromechanical Systems, vol. 16, no. 4, pp. 919-931, Aug, 2007.
    [14] L. F. de Diego, F. Garcia-Labiano, P. Gayan, J. Celaya, J. M. Palacios, and J. Adanez, “Operation of a 10 Kwth Chemical-Looping Combustor During 200 h with a CuO-Al2O3 Oxygen Carrier,” Fuel, vol. 86, no. 7-8, pp. 1036-1045, May, 2007.
    [15] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xui, C. T. Lim, V. B. C. Tan, J. T. L. Thong, and C. H. Sow, “Large-Scale Synthesis and Field Emission Properties of Vertically Oriented CuO Nanowire Films,” Nanotechnology, vol. 16, no. 1, pp. 88-92, Jan, 2005.
    [16] I. Ali, “New Generation Adsorbents for Water Treatment,” Chem Rev, vol. 112, no. 10, pp. 5073-91, Oct 10, 2012.
    [17] J. Liu, J. Jin, Z. Deng, S. Z. Huang, Z. Y. Hu, L. Wang, C. Wang, L. H. Chen, Y. Li, G. Van Tendeloo, and B. L. Su, “Tailoring CuO Nanostructures for Enhanced Photocatalytic Property,” J Colloid Interface Sci, vol. 384, no. 1, pp. 1-9, Oct 15, 2012.
    [18] R. V. Kumar, Y. Diamant, and A. Gedanken, “Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates,” Chemistry of Materials, vol. 12, no. 8, pp. 2301-2305, Aug, 2000.
    [19] Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, and P. Wang, “Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction,” ACS Nano, vol. 7, no. 2, pp. 1709-17, Feb 26, 2013.
    [20] S. Sunkara, V. K. Vendra, J. H. Kim, T. Druffel, and M. K. Sunkara, “Scalable Synthesis and Photoelectrochemical Properties of Copper Oxide Nanowire Arrays and Films,” Catalysis Today, vol. 199, pp. 27-35, 2013.
    [21] D. P. Singh, and N. Ali, “Synthesis of TiO2 and CuO Nanotubes and Nanowires,” Science of Advanced Materials, vol. 2, no. 3, pp. 295-335, Sep, 2010.
    [22] M.-K. Song, S. Park, F. M. Alamgir, J. Cho, and M. Liu, “Nanostructured Electrodes for Lithium-Ion and Lithium-Air Batteries: The Latest Developments, Challenges, and Perspectives,” Materials Science and Engineering: R: Reports, vol. 72, no. 11, pp. 203-252, 2011.
    [23] V. V. Kislyuk, and O. P. Dimitriev, “Nanorods and Nanotubes for Solar Cells,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 1, pp. 131-148, 2008.
    [24] Y. Liu, Y. Chu, Y. J. Zhuo, M. Y. Li, L. L. Li, and L. H. Dong, “Anion-Controlled Construction of CuO Honeycombs and Flowerlike Assemblies on Copper Foils,” Crystal Growth & Design, vol. 7, no. 3, pp. 467-470, Mar, 2007.
    [25] K. Zhou, R. Wang, B. Xu, and Y. Li, “Synthesis, Characterization and Catalytic Properties of CuO Nanocrystals with Various Shapes,” Nanotechnology, vol. 17, no. 15, pp. 3939-3943, 2006.
    [26] L. Rout, T. K. Sen, and T. Punniyamurthy, “Efficient CuO-Nanoparticle-Catalyzed C-S Cross-Coupling of Thiols with Iodobenzene,” Angew Chem Int Ed Engl, vol. 46, no. 29, pp. 5583-6, 2007.
    [27] L. Rout, S. Jammi, and T. Punniyamurthy, “Novel CuO Nanoparticle Catalyzed C-N Cross Coupling of Amines with Iodobenzene,” Org Lett, vol. 9, no. 17, pp. 3397-9, Aug 16, 2007.
    [28] F. Mumm, A. T. van Helvoort, and P. Sikorski, “Easy Route to Superhydrophobic Copper-Based Wire-Guided Droplet Microfluidic Systems,” ACS Nano, vol. 3, no. 9, pp. 2647-52, Sep 22, 2009.
    [29] B. Vidhyadharan, I. I. Misnon, R. A. Aziz, K. P. Padmasree, M. M. Yusoff, and R. Jose, “Superior Supercapacitive Performance in Electrospun Copper Oxide Nanowire Electrodes,” Journal of Materials Chemistry A, vol. 2, no. 18, pp. 6578, 2014.
    [30] Q. Zhang, J. Wang, D. Xu, Z. Wang, X. Li, and K. Zhang, “Facile Large-Scale Synthesis of Vertically Aligned Cuo Nanowires on Nickel Foam: Growth Mechanism and Remarkable Electrochemical Performance,” Journal of Materials Chemistry A, vol. 2, no. 11, pp. 3865, 2014.
    [31] H. G. Im, S. H. Jung, J. Jin, D. Lee, J. Lee, D. Lee, J. Y. Lee, I. D. Kim, and B. S. Bae, “Flexible Transparent Conducting Hybrid Film Using a Surface-Embedded Copper Nanowire Network: A Highly Oxidation-Resistant Copper Nanowire Electrode for Flexible Optoelectronics,” ACS Nano, vol. 8, no. 10, pp. 10973-9, Oct 28, 2014.
    [32] R. N. Briskman, “A Study of Electrodeposited Cuprous-Oxide Photovoltaic Cells,” Solar Energy Materials and Solar Cells, vol. 27, no. 4, pp. 361-368, Sep, 1992.
    [33] S. Brittman, Y. Yoo, N. P. Dasgupta, S. I. Kim, B. Kim, and P. Yang, “Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells,” Nano Lett, vol. 14, no. 8, pp. 4665-70, Aug 13, 2014.
    [34] W. Y. Ching, Y.-N. Xu, and K. W. Wong, “Ground-State and Optical Properties of Cu2O and CuO Crystals,” Physical Review B, vol. 40, no. 11, pp. 7684-7695, 1989.
    [35] P. Lignier, R. Bellabarba, and R. P. Tooze, “Scalable Strategies for the Synthesis of Well-Defined Copper Metal and Oxide Nanocrystals,” Chem Soc Rev, vol. 41, no. 5, pp. 1708-20, Mar 7, 2012.
    [36] Q. B. Zhang, K. L. Zhang, D. G. Xu, G. C. Yang, H. Huang, F. D. Nie, C. M. Liu, and S. H. Yang, “CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications,” Progress in Materials Science, vol. 60, pp. 208-337, Mar, 2014.
    [37] D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fassell, “Oxidation of Copper to Cu2O and CuO (600 OC-1000 OC and 0.026-20.4 Atm Oxygen),” Journal of the Electrochemical Society, vol. 103, no. 9, pp. 475-478, 1956.
    [38] E. A. Gulbransen, T. P. Copan, and K. F. Andrew, “Oxidation of Copper between 250°C and 450°C and the Growth of CuO “Whiskers”,” Journal of The Electrochemical Society, vol. 108, no. 2, pp. 119, 1961.
    [39] Y. F. Zhu, K. Mimura, J. W. Lim, M. Isshiki, and Q. Jiang, “Brief Review of Oxidation Kinetics of Copper at 350 OC to 1050 OC,” Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 37a, no. 4, pp. 1231-1237, Apr, 2006.
    [40] J. H. Park, and K. Natesan, “Oxidation of Copper and Electronic Transport in Copper Oxides,” Oxidation of Metals, vol. 39, no. 5-6, pp. 411-435, Jun, 1993.
    [41] S. Mrowec, and A. Stoklosa, “Oxidation of Copper at High Temperatures,” Oxidation of Metals, vol. 3, no. 3, pp. 291-&, 1971.
    [42] R. Tylecote, “The Oxidation of Copper at 350-900 C. In Air,” J INST MET, vol. 78, pp. 327-350, 1950.
    [43] W. Gao, H. Gong, J. He, A. Thomas, L. Chan, and S. Li, “Oxidation Behaviour of Cu Thin Films on Si Wafer at 175-400 OC,” Materials Letters, vol. 51, no. 1, pp. 78-84, Oct, 2001.
    [44] Y. F. Zhu, K. Mimura, and M. Isshiki, “Oxidation Mechanism of Copper at 623-1073 K,” Materials Transactions, vol. 43, no. 9, pp. 2173-2176, Sep, 2002.
    [45] V. V. Prisedsky, and V. M. Vinogradov, “Fragmentation of Diffusion Zone in High-Temperature Oxidation of Copper,” Journal of Solid State Chemistry, vol. 177, no. 11, pp. 4258-4268, 2004.
    [46] X. Wang, and Y. Li, “Solution-Based Routes to Transition-Metal Oxide One-Dimensional Nanostructures,” Pure and Applied Chemistry, vol. 78, no. 1, 2006.
    [47] W. Jia, E. Reitz, H. Sun, B. Li, H. Zhang, and Y. Lei, “From Cu2(OH)3Cl to Nanostructured Sisal-Ike Cu(OH)2 and CuO: Synthesis and Characterization,” Journal of Applied Physics, vol. 105, no. 6, pp. 064917, 2009.
    [48] G.-Q. Yuan, H.-F. Jiang, C. Lin, and S.-J. Liao, “Shape- and Size-Controlled Electrochemical Synthesis of Cupric Oxide Nanocrystals,” Journal of Crystal Growth, vol. 303, no. 2, pp. 400-406, 2007.
    [49] A. Li, H. H. Song, W. B. Wan, J. S. Zhou, and X. H. Chen, “Copper Oxide Nanowire Arrays Synthesized by in-Situ Thermal Oxidation as an Anode Material for Lithium-Ion Batteries,” Electrochimica Acta, vol. 132, pp. 42-48, Jun 20, 2014.
    [50] G. Filipic, and U. Cvelbar, “Copper Oxide Nanowires: A Review of Growth,” Nanotechnology, vol. 23, no. 19, pp. 194001, May 17, 2012.
    [51] S. Ren, Y. F. Bai, J. Chen, S. Z. Deng, N. S. Xu, Q. B. Wu, and S. H. Yang, “Catalyst-Free Synthesis of ZnO Nanowire Arrays on Zinc Substrate by Low Temperature Thermal Oxidation,” Materials Letters, vol. 61, no. 3, pp. 666-670, Feb, 2007.
    [52] Y. Y. Fu, R. M. Wang, J. Xu, J. Chen, Y. Yan, A. Narlikar, and H. Zhang, “Synthesis of Large Arrays of Aligned Alpha-Fe2O3 Nanowires,” Chemical Physics Letters, vol. 379, no. 3-4, pp. 373-379, Sep 26, 2003.
    [53] C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee, “Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates,” Advanced Functional Materials, vol. 14, no. 6, pp. 589-594, Jun, 2004.
    [54] Z. Wang, Q. Zhao, Y. Zhang, B. Xiang, and D. P. Yu, “Microstructure Characterization of Al2O3 Nanowires With networked rectangular Nanostructure,” The European Physical Journal D, vol. 34, no. 1-3, pp. 303-305, 2005.
    [55] A. Kumar, A. K. Srivastava, P. Tiwari, and R. V. Nandedkar, “The Effect of Growth Parameters on the Aspect Ratio and Number Density of Cuo Nanorods,” Journal of Physics-Condensed Matter, vol. 16, no. 47, pp. 8531-8543, Dec 1, 2004.
    [56] J. T. Chen, F. Zhang, J. Wang, G. A. Zhang, B. B. Miao, X. Y. Fan, D. Yan, and P. X. Yan, “CuO Nanowires Synthesized by Thermal Oxidation Route,” Journal of Alloys and Compounds, vol. 454, no. 1-2, pp. 268-273, Apr 24, 2008.
    [57] A. M. B. Goncalves, L. C. Campos, A. S. Ferlauto, and R. G. Lacerda, “On the Growth and Electrical Characterization of CuO Nanowires by Thermal Oxidation,” Journal of Applied Physics, vol. 106, no. 3, Aug 1, 2009.
    [58] F. Wu, Y. Myung, and P. Banerjee, “Unravelling Transient Phases During Thermal Oxidation of Copper for Dense CuO Nanowire Growth,” Crystengcomm, vol. 16, no. 16, pp. 3264-3267, 2014.
    [59] L. Yuan, Y. Q. Wang, R. Mema, and G. W. Zhou, “Driving Force and Growth Mechanism for Spontaneous Oxide Nanowire Formation During the Thermal Oxidation of Metals,” Acta Materialia, vol. 59, no. 6, pp. 2491-2500, Apr, 2011.
    [60] X. C. Jiang, T. Herricks, and Y. N. Xia, “Cuo Nanowires Can Be Synthesized by Heating Copper Substrates in Air,” Nano Letters, vol. 2, no. 12, pp. 1333-1338, Dec, 2002.
    [61] R. Mema, L. Yuan, Q. T. Du, Y. Q. Wang, and G. W. Zhou, “Effect of Surface Stresses on CuO Nanowire Growth in the Thermal Oxidation of Copper,” Chemical Physics Letters, vol. 512, no. 1-3, pp. 87-91, Aug 16, 2011.
    [62] P. Wang, X. Zhao, and B. Li, “ZnO-Coated CuO Nanowire Arrays: Fabrications, Optoelectronic Properties, and Photovoltaic Applications,” Opt Express, vol. 19, no. 12, pp. 11271-9, Jun 6, 2011.
    [63] X. Wang, D. M. Tang, H. Li, W. Yi, T. Zhai, Y. Bando, and D. Golberg, “Revealing the Conversion Mechanism of CuO Nanowires During Lithiation-Delithiation by in Situ Transmission Electron Microscopy,” Chem Commun (Camb), vol. 48, no. 40, pp. 4812-4, May 18, 2012.
    [64] G. Tammann, “Über Anlauffarben Von Metallen,” Zeitschrift für anorganische und allgemeine Chemie, vol. 111, no. 1, pp. 78-89, 1920.
    [65] R. Bedworth, and N. Pilling, “The Oxidation of Metals at High Temperatures,” J Inst Met, vol. 29, no. 3, pp. 529-582, 1923.
    [66] TA Instruments. "SDT Brochure," 24 June, 2016; http://www.tainstruments.com.cn/
    pdf/brochure/2006_SDT_Brochure.pdf.
    [67] "University of Glasgow - Schools - School of Geographical and Earth Sciences - Research - Research Facilities - Isaac : Imaging Spectroscopy and Analysis Centre - Services - Scanning Electron Microscopy," 24 June, 2016; http://www.gla.ac.uk/
    schools/ges/research/researchfacilities/isaac/services/scanningelectronmicroscopy/.
    [68] "X-Ray Diffraction," 24 June, 2016; http://pruffle.mit.edu/atomiccontrol/education/
    xray/xray_diff.php.
    [69] K.-P. Bohnen, R. Heid, L. Pintschovius, A. Soon, and C. Stampfl, “Ab Initiolattice Dynamics and Thermal Expansion of Cu2O,” Physical Review B, vol. 80, no. 13, 2009.
    [70] T. D. Dzhafarov, M. Altunbas, and O. Gorur, “The High-Temperature Thermal Expansion of BiPbSrCaCuO Superconductor and the Oxide Components (Bi2O3, PbO, CaO, CuO),” Journal of Materials Science, vol. 31, no. 8, pp. 2207-2212, Apr 15, 1996.

    下載圖示 校內:立即公開
    校外:2017-01-01公開
    QR CODE