| 研究生: |
陳昱安 Chen, Yu-An |
|---|---|
| 論文名稱: |
低壓氣相溶液輔助多維度混成鈣鈦礦材料與光學特性 Material and Optical characteristics multi-dimensional mixed perovskite by Low pressure Vapor-Assisted Solution Process |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 二維三維混成鈣鈦礦 、低壓氣相輔助溶液製成 、多光子螢光 |
| 外文關鍵詞: | 2D/3D hybrid perovskite, LP-VASP, KPFM |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,二維鈣鈦礦 (2D perovskite) 引起了人們的廣泛關注,由於它們與三維鈣鈦礦 (3D perovskite) 相比具有更好的穩定性。本篇論文中,我們通過低壓氣相輔助溶液製程 (LP-VASP),藉由過度摻雜 PEAI (Phenethylammonium iodide) 來製作二維三維混成鈣鈦礦 (2D/3D hybrid perovskite),並通過多光子激發螢光掃描顯微鏡 (Multiphoton Excitation Microscope)、光致螢光掃描顯微鏡 (PL mapping)、表面電位掃描顯微鏡 (KPFM) 等儀器,對鈣鈦礦薄膜中的各種 n 值的鈣鈦礦進行空間分析。從穩態 PL 光譜中,鈣鈦礦薄膜表現出不同的特徵峰,對應於不同 n 值的二維鈣鈦礦,表示薄膜中擁有多種的二維鈣鈦礦。結果指出,過度參雜 PEA 鈣鈦礦薄膜具有不同的功函數,與多光子激發螢光掃描、PL mapping 一致。
In this study, we highly doped phenylethylammonium iodide (PEAI) to fabricate a 2D/3D hybrid perovskite. By using low-pressure vapor-assisted solution process (LP-VASP) method, the as-fabricated film exhibits multiple photoluminescence (PL) emission peaks corresponding to 2D perovskite with variant spacing as well as 3D perovskite. We conduct two-photon excitation microscopy and confocal microscopy to identify the spatial distribution of different n value perovskite in the resultant film.
[1] A. Becquerel, “Mémoire sur les effets électriques produits sous l’influence des rayons solaires,” Comptes Rendus de L’Academie des Seciences, vol. 9, pp. 561–567, 1839.
[2] C.Fritts,“Onanewformofseleniumphotocell,”AdvancementofScience,vol.33,no.97, 1883.
[3] M. A. Green, “Photovoltaics: coming of age,” IEEE Journal of Photovoltaics, 1990.
[4] W. Deng, D. Chen, Z. Xiong, P. J. Verlinden, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, and P. Altermatt, “20.8% solar cell on 156 mm x 156 mm p-type multicrystalline silicon substrate,” IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 3–9, 2016.
[5] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yam- aguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell conversion efficiency with crystalline sili- con heterojunction solar cell,” IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433–1435, 2014.
[6] T. Matsui, H. Sai, A. Bidiville, H.-J. Hsu, and K. Matsubara, “Progress and limitations of thin-film silicon solar cells,” Solar Energy, vol. 170, pp. 486 – 498, 2018.
[7] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Progress in Photovoltaics: Research and Applications, vol. 23, no. 1, pp. 1–9, 2015.
[8] B.O’ReganandM.Grätzel,“Alow-cost,high-efficiencysolarcellbasedondye-sensitized colloidal tio2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[9] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009.
[10] H.-S. Kim, A. Hagfeldt, and N.-G. Park, “Morphological and compositional progress in halide perovskite solar cells,” Chemical Communications, vol. 55, pp. 1192–1200, 2019.
[11] Y. Chen, L. Zhang, Y. Zhang, H. Gao, and H. Yan, “Large-area perovskite solar cells a review of recent progress and issues,” RSC Advances, vol. 8, pp. 10489–10508, 2018.
[12] NREL, “https://www.nrel.gov/pv/cell-efficiency.html.”
[13] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, “A lay- ered hybrid perovskite solar-cell absorber with enhanced moisture stability,” Angewandte Chemie, vol. 126, no. 42, pp. 11414–11417, 2014.
[14] D. B. Mitzi, Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials. John Wiley Sons, Ltd, 1999.
[15] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, p. 4088, 2011.
[16] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with effi- ciency exceeding 9%,” Scientific reports, vol. 2, pp. 591–591, 2012.
[17] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316–319, 2013.
[18] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nature Materials, vol. 13, no. 9, pp. 897–903, 2014.
[19] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395–398, 2013.
[20] C.-W.Chen,H.-W.Kang,S.-Y.Hsiao,P.-F.Yang,K.-M.Chiang,andH.-W.Lin,“Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition,” Advanced Materials, vol. 26, no. 38, pp. 6647–6652, 2014.
[21] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” Journal of the American Chemical Society, vol. 136, no. 2, pp. 622–625, 2014.
[22] M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, “High performance perovskite solar cells by hybrid chemical vapor deposition,” J. Mater. Chem. A, vol. 2, no. 44, pp. 18742–18745, 2014.
[23] Y. Peng, G. Jing, and T. Cui, “A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells,” Journal of Materials Chemistry A, vol. 3, no. 23, pp. 12436–12442, 2015.
[24] M.-H.Li,H.-H.Yeh,Y.-H.Chiang,U.-S.Jeng,C.-J.Su,H.-W.Shiu,Y.-J.Hsu,N.Kosugi, T. Ohigashi, Y.-A. Chen, S. Po-Shen, P. Chen, and T.-F. Guo, “Highly efficient 2d/3d hybrid perovskite solar cells via low-pressure vapor-assisted solution process,” Advanced Materials, vol. 30, no. 30, p. 1801401, 2018.
[25] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, and M. Grätzel, “Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting,” Angewandte Chemie International Edition, vol. 53, no. 12, pp. 3151–3157, 2014.
[26] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environmental Science, vol. 9, no. 6, pp. 1989–1997, 2016.
[27] S. N. Ruddlesden and P. Popper, “The compound sr3ti2o7 and its structure,” Acta Crystal- lographica, vol. 11, no. 1, pp. 54–55, 1958.
[28] S. N. Ruddlesden and P. Popper, “New compounds of the k2nif4 type,” Acta Crystallo- graphica, vol. 10, no. 8, pp. 538–539, 1957.
[29] D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature, vol. 369, no. 6480, pp. 467– 469, 1994.
[30] L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, and E. H. Sargent, “Ligand-stabilized reduced-dimensionality perovskites,” Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649–2655, 2016.
[31]M.Yuan,L.N.Quan,R.Comin,G.Walters,R.Sabatini,O.Voznyy,S.Hoogland,Y.Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite en- ergy funnels for efficient light-emitting diodes,” Nature Nanotechnology, vol. 11, pp. 872– 877, 2016.
[32] W. Peng, J. Yin, K.-T. Ho, O. Ouellette, M. De Bastiani, B. Murali, O. El Tall, C. Shen, X. Miao, J. Pan, and et al., “Ultralow self-doping in two-dimensional hybrid perovskite single crystals,” Nano Letters, vol. 17, no. 8, pp. 4759–4767, 2017.
[33] A. Grzybowski and K. Pietrzak, “Maria goeppert-mayer (1906–1972): Two-photon effect on dermatology,” Clinics in Dermatology, vol. 31, no. 2, pp. 221–225, 2013.
[34] N. V. TKACHENKO, Optical Spectroscopy Methods and Instrumentations. Elsevier Sci- ence, 2006.
[35] G. Walters, B. R. Sutherland, S. Hoogland, D. Shi, R. Comin, D. P. Sellan, O. M. Bakr, and E. H. Sargent, “Two-photon absorption in organometallic bromide perovskites,” ACS Nano, vol. 9, no. 9, pp. 9340–9346, 2015.
[36] W. Liu, J. Xing, J. Zhao, X. Wen, K. Wang, P. Lu, and Q. Xiong, “Giant two-photon absorption and its saturation in 2d organic–inorganic perovskite,” Advanced Optical Ma- terials, vol. 5, no. 7, p. 1601045, 2017.
[37] W. Kern, Thin Film Processes II 1st Edition. ELSEVIER, 1991.
[38] D. C. Harris and C. A. Lucy, Quantitative chemical analysis. W. H. Freeman and Com- pany, 2017.
[39] B.-T. Kot-Malgorzata, “In-operando hard x-ray photoelectron spectroscopy study on the resistive switching physics of hfo2-based rram,” Journal of Applied Physics, vol. 115, p. 204509, 2014.
[40] B. W. Henry and B. W. Lawrence, “The reflection of x-rays by crystals,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 88, no. 605, pp. 428–438, 1913.
[41] R. H. Kretsinger, Principles of protein X-ray crystallography. Springer-Verlag, 1999.
[42] E. Frahm, Scanning Electron Microscopy (SEM). Springer Netherlands, 2017.
[43] J. Perlich, J. Rubeck, S. Botta, R. Gehrke, S. V. Roth, M. A. Ruderer, S. M. Prams, M. Ra- wolle, Q. Zhong, V. Körstgens, and P. Müller-Buschbaum, “Grazing incidence wide angle x-ray scattering at the wiggler beamline bw4 of hasylab,” Review of Scientific Instruments, vol. 81, no. 10, p. 105105, 2010.
[44] D. J. Herman, J. E. Goldberger, S. Chao, D. T. Martin, and S. I. Stupp, “Orienting peri- odic organicinorganic nanoscale domains through one-step electrodeposition,” ACS Nano, vol. 5, no. 1, pp. 565–573, 2011.
[45] K. Okamoto, K. Tateishi, K. Tamada, M. Funato, and Y. Kawakami, “Micro- photoluminescence mapping of surface plasmon-coupled emission from InGaN/GaN quantum wells,” Japanese Journal of Applied Physics, vol. 58, 2019.
[46] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Physical Review Let- ters, vol. 56, pp. 930–933, 1986.
[47] M. Linford, “Introduction to surface and material analysis and to various analytical tech- niques,” Vacuum Technology Coating, pp. 27 – 33, 2014.
[48] L. Ferrari, J. Kaufmann, F. Winnefeld, and J. Plank, “Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorp- tion measurements,” Journal of Colloid and Interface Science, vol. 347, no. 1, pp. 15 – 24, 2010.
[49] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, “The chemical structure of a molecule resolved by atomic force microscopy,” Science, vol. 325, no. 5944, pp. 1110– 1114, 2009.
[50] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, “Kelvin probe force microscopy and its application,” Surface Science Reports, vol. 66, no. 1, pp. 1 – 27, 2011.
校內:2024-07-24公開