簡易檢索 / 詳目顯示

研究生: 鐘裕勛
Jhong, Yu-Syun
論文名稱: 應用耦合模擬於同步磁阻馬達電流控制器之研製
Development of Synchronous Reluctance Motor Current Controller Using Coupled-field Analysis
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 112
中文關鍵詞: 同步磁阻馬達耦合模擬交互磁飽和解耦合
外文關鍵詞: synchronous reluctance motor, coupled-field analysis, cross-magnetic saturation, decoupling
相關次數: 點閱:75下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁場導向控制(Field Oriented Control)控制架構中,電流內迴路控
    制器的設計仰賴馬達d、q 軸電感及相電阻的資料。傳統上將馬達d、
    q 軸電感視為定值,並且忽略矽鋼片的飽和進行解耦合之電流控制器
    設計。然而同步磁阻馬達(Synchronous Reluctance Motor)由於本身無
    磁鐵,需利用d 軸電流激磁提供磁場,因此d、q 軸電感受電流影響
    更為顯著。
    本文使用有限元素分析軟體ANSYS Maxwell 與Simplorer 進行
    電磁耦合模擬,電磁耦合模擬結合功率開關的驅動控制與馬達的有限
    元素分析,因此能夠考量同步磁阻馬達d、q 軸電感的相互耦合,結
    合電流衰減量測法取得同步磁阻馬達於操作電流條件下之電感,並且
    利用相同的方法進行實驗以驗證模擬所得之電感值。藉由極零點對消
    法設計動態控制器,以增進d、q 軸電感解耦合之效益,並與固定參
    數之控制器做比較,由模擬結果可驗證動態電流控制器能達到更好的
    電流控制效果,降低d、q 軸交互磁飽和效應對電流控制的影響。

    This thesis proposes two dynamic controllers to mitigate the influences of cross-magnetic saturation of synchronous reluctance motor (SynRM) by using electromagnetic co-simulation. The cross-magnetic saturation is a phenomenon that the d and q axis inductances vary with not only the self-axis current but also the other. By applying the current decay test, the inductance of d and q axis can be obtained in both measurement and co-simulation. There are some differences in the inductances obtained by measurement and co-simulation, but the curves have same tendency. Thus, the measurement approach is considered to be effective. Using the obtained inductance and the pole-zero cancellation technique, the dynamic controller is designed.
    In order to reduce the complexity due to the mutual effect of the d and q inductances, the d axis current is first designed as a constant. Then, the command of the q axis current varies due to the velocity error with the d axis current is fixed. The result of co-simulation shows that the dynamic controllers provide better decoupling effect than a constant-gain controller while regulate the velocity command.

    目錄 摘要 ......................................... i 誌謝 ......................................... vii 目錄 ......................................... viii 圖目錄 ....................................... x 表目錄 ....................................... xiii 符號表 ....................................... xiv 第一章 緒論 .................................. 1 1.1 前言 ..................................... 1 1.2 文獻回顧與分析 ........................... 4 1.2.1 同步磁阻馬達設計 ....................... 5 1.2.2 同步磁阻馬達驅動 ....................... 8 1.2.3 馬達電感量測 ........................... 11 1.3 研究動機與目的 ........................... 16 1.4 論文架構 ................................. 17 第二章 同步磁阻馬達之驅動控制 ................ 18 2.1 簡介 ..................................... 18 2.2 同步磁阻馬達數學模型 ..................... 19 2.3 同步磁阻馬達電感量測方法 ................. 24 2.3.1 LCR meter 量測 ......................... 25 2.3.2 電流衰減量測法 ......................... 27 2.4 圓線圖法 ................................. 31 2.5 磁場導向控制 ............................. 34 2.5.1 座標轉換 ............................... 34 2.5.2 空間向量脈波寬度調變 ................... 38 2.5.3 比例積分控制器設計 ..................... 49 第三章 硬體電路與電流控制器之實現 ............ 55 3.1 硬體電路 ................................. 56 3.1.1 微控制器架構 ........................... 56 3.1.2 增量型編碼器 ........................... 60 3.1.3 差動轉單端輸出IC ....................... 61 3.1.4 功率開關 ............................... 62 3.1.5 電流感測器 ............................. 64 3.2 微控制器運算格式 ......................... 66 3.3 程式流程 ................................. 68 第四章 模擬與實驗結果 ........................ 71 4.1 簡介 ..................................... 71 4.2 電流衰減量測法 ........................... 74 4.2.1 電流衰減量測法於模擬之實現 ............. 74 4.2.2 電流衰減量測法之實作 ................... 81 4.2.3 電流衰減量測法之結果比較 ............... 84 4.3 動態控制器之耦合模擬 ..................... 92 4.3.1 電路架構 ............................... 92 4.3.2 模擬結果比較 ........................... 98 4.4 實驗結果 ................................. 106 第五章 結論與建議 ............................ 108 參考文獻 ..................................... 109

    [1] 蔣本基, 顧洋, 鄭耀文, 林志森, "我國溫室氣體減量整體因應
    策略," 科學與工程技術期刊, 大葉大學, pp. 1-8, 2006.
    [2] 經濟部能源局, "2010 年能源產業技術白皮書," 經濟部能源局,
    2010.
    [3] M. Jufer and M. Jufer, "Motors," Electric Drives, John Wiley &
    Sons, Inc., pp. 41-86, 2013.
    [4] N. Mohan, Electric Drives: Mnpere, 2001.
    [5] B. K. Bose, "Chapter 6 - Electrical Machines for Variable-Speed
    Drives," Power Electronics And Motor Drives, B. K. Bose,
    Burlington: Academic Press, pp. 325-390, 2006.
    [6] G. R. Slemon, "Electrical Machines for Drives," Power Electronics
    and Variable Frequency Drives, John Wiley & Sons, Inc., pp. 36-
    79, 1996.
    [7] P. Pillay and R. Krishnan, "Application characteristics of
    permanent magnet synchronous and brushless DC motors for servo
    drives," IEEE Transactions on Industry Applications, vol. 27, pp.
    986-996, 1991.
    [8] R. A. Trubenbach, A. T. Mackay, and M. J. Kamper, "Performance
    of a reluctance synchronous machine under vector control," in
    Proceedings of IEEE, Power Electronics Specialists Conference,
    pp. 803-808, 1993.
    [9] T. Fukami, M. Momiyama, K. Shima, R. Hanaoka, and S. Takata,
    "Steady-State Analysis of a Dual-Winding Reluctance Generator
    With a Multiple-Barrier Rotor," IEEE Transactions on Energy
    Conversion, vol. 23, pp. 492-498, 2008.
    [10] A. Vagati, G. Franceschini, I. Marongiu, and G. P. Troglia, "Design
    criteria of high performance synchronous reluctance motors," in
    Proceedings of IEEE, Industry Applications Society Annual
    Meeting, vol.1, pp. 66-73, 1992.
    [11] A. Vagati, A. Fratta, G. Franceschini, and P. Rosso, "AC motors for
    high-performance drives: a design-based comparison," IEEE
    Transactions on Industry Applications, vol. 32, pp. 1211-1219,
    1996.
    [12] R. E. Betz, M. Jovanovic, R. Lagerquist, and T. J. E. Miller,
    "Aspects of the control of synchronous reluctance machines
    including saturation and iron losses," in Proceedings of IEEE,
    Industry Applications Society Annual Meeting, vol.1, pp. 456-463,
    1992.
    [13] A. Chiba and T. Fukao, "A closed-loop operation of super highspeed
    reluctance motor for quick torque response," IEEE
    Transactions on Industry Applications, vol. 28, pp. 600-606, 1992.
    [14] A. Vagati, M. Pastorelli, and G. Franceschini, "High-performance
    control of synchronous reluctance motors," IEEE Transactions on
    Industry Applications, vol. 33, pp. 983-991, 1997.
    [15] A. Vagati, M. Pastorelli, G. Franceschini, and V. Drogoreanu,
    "Digital observer-based control of synchronous reluctance motors,"
    in Proceedings of IEEE, Industry Applications Conference, vol.1,
    pp. 629-636, 1997.
    [16] T. Senjyu, K. Kinjo, N. Urasaki, and K. Uezato, "High efficiency
    control of synchronous reluctance motors using extended Kalman
    filter," in Proceedings of IEEE, Industrial Technology, vol.1, pp.
    252-257, 2002.
    [17] T. Senjyu, T. Shingaki, and K. Uezato, "A novel high efficiency
    drive strategy for synchronous reluctance motors considering iron
    loss using neural network," in Proceedings of IEEE, Applied Power
    Electronics Conference and Exposition, vol.2, pp. 1090-1095,
    2001.
    [18] W. Soong, "Inductance measurements for synchronous machines,"
    Power Engineering Briefing Note Series, vol. 2, 2008.
    [19] M. Musak and M. Štulrajter, "Novel methods for parameters
    investigation of PM synchronous motors " Acta Technica
    Corvininesis-Bulletin of Engineering, vol. 6, 2013.
    [20] M. J. Kamper and A. F. Volsdhenk, "Effect of rotor dimensions and
    cross magnetisation on Ldand Lq inductances of reluctance
    synchronous machine with cageless flux barrier rotor," IEEE
    Proceedings - Electric Power Applications, vol. 141, pp. 213-220,1994.
    [21] A. Kilthau and J. M. Pacas, "Parameter-measurement and control
    of the synchronous reluctance machine including cross saturation,"
    in Proceedings of IEEE Industry Applications Conference, vol.4,
    pp. 2302-2309, 2001.
    [22] R. Krishnan, Electric Motor Drives, Modeling and Analysis:
    Prentice Hall, Inc, 2001.
    [23] 劉昌煥, "交流電動機控制: 向量控制與直接轉矩控制原理," 第
    二版, 東華書局, 2003.
    [24] 鄭品宏, "具類神經網路補償之同步磁阻馬達滑模速度控制," 碩
    士, 國立雲林科技大學, 2004.
    [25] A. E. Fitzgerald, C. Kingsley, and S. D. Umans, Electric
    Machinery: McGraw-Hill, 2003.
    [26] A. Farhan, A. Saleh, and A. Shaltout, "High performance
    Reluctance Synchronous Motor drive using Field Oriented
    Control," in Proceedings of International Conference, Modelling,
    Identification & Control (ICMIC), pp. 181-186, 2013.
    [27] S. E. Sibande, "Rotor Design and Performance Evaluation of a
    PM-assisted Reluctance Synchronous Traction Machine," Master,
    Electrical engineering, Stellenbosch University, 2005.
    [28] 陳航生, "內藏式永磁同步馬達之特性分析及其電動機車之應
    用," 碩士, 國立成功大學, 2004.
    [29] N. Mohan, Power electronics: a first course: Wiley, 2012.
    [30] H. Abu-Rub, A. Iqbal, and J. Guzinski, "Pulse Width Modulation of
    Power Electronic DC-AC Converter," High Performance Control
    of AC Drives with MATLAB/Simulink Models, John Wiley & Sons,
    Inc., pp. 45-138, 2012.
    [31] B. C. Kuo, Automatic control systems: Prentice Hall PTR, 1987.
    [32] M. W. Naouar, E. Monmasson, I. Slama-Belkhodja, and A. A.
    Naassani, "PI Current Control of a Synchronous Motor," Power
    Electronic Converters, John Wiley & Sons, Inc., pp. 287-318,
    2013.
    [33] 曾百由, "dsPIC 數位訊號控制器原理與應用: MPLAB C30 開
    發實務," 宏友圖書, 2009.
    [34] dsPIC30F4011/4012 Data Sheet: Microchip Technology, Inc.,
    2010.
    [35] HS35F data sheet: HONEST SENSOR, 2014.
    [36] AM26LS32 data sheet: Motorola, Inc., 1995.
    [37] IXFN360N10T data sheet: IXYS, Inc, 2009.
    [38] ACS758xCB data sheet: Allegro MicroSystems, Inc., 2008.
    [39] 蔡逸文, "應用薄型電磁鋼片之同步磁阻電機設計,"碩士, 國立
    成功大學, 2015.
    [40] 陳名輝, "應用磁電耦合分析之同步磁阻馬達驅動器研製," 碩
    士, 國立成功大學, 2015.

    下載圖示 校內:2021-09-10公開
    校外:2021-09-10公開
    QR CODE