| 研究生: |
董彥閔 Tung, Yen-Min |
|---|---|
| 論文名稱: |
地電阻影像法於古蹟遺址探測與大地環境應用之研究 Applying Resistivity Image Profiling to Archaeological Sites and Geo-Environmental Detection |
| 指導教授: |
吳建宏
WU, Jain-Hong 李德河 Lee, Der-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 非破壞性探測 、地電阻影像法 、透地雷達 |
| 外文關鍵詞: | Non-destructive tests, Resistivity Image Profiling, Ground Penetrating Radar |
| 相關次數: | 點閱:163 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將地電阻影像法應於三處不同性質的區域進行研究,分別為古蹟遺址探測、混凝土河堤淘空檢測及邊坡崩塌地現地的應用;首先,本研究針對台灣府城小東門段城垣甕城遺址可能之座落範圍,嘗試使用地電阻影像法與透地雷達技術進行探測;此外,本研究針對河堤混凝土面版下方淘空的狀況嘗試使用地電阻影像法搭配透地雷達探測技術進行非破壞性的檢測,並且進行解析度與準確性之探討;同時,本研究分別於南化水庫集水區內之公路邊坡與高雄市甲仙區獻肚山崩塌地進行地電阻影像法探測,並探討地電阻影像法於崩塌地的應用面。
1. 由古蹟遺址探測成果顯示:(a)經過現場挖掘作業後,顯示地電阻於古蹟遺址探測的適用性高(b)使用Dipole-Dipole電極排列施測會受到較高的雜訊(noise)影響,以Wenner與Schlumberger電極排列施測適用性較佳。(c)測線規劃若平行於遺址基礎的延伸方向會造成判釋上的困難。(d)從地電阻探測與挖掘結果可得知,在進行圖徵判釋時,雜訊(noise)影響範圍總共約為實際尺寸之1/5。(e)小東門甕城基礎材料三合土之電阻率約為300~960Ohm-m。(f)由地電阻與透地雷達施測結果比對後發現,兩種地球物理探測方法對於甕城遺址基礎的探測具有一致性。
2. 由河堤混凝土淘空檢測成果顯示:針對相同淘空處,透地雷達對與地電阻法施測結果皆能顯示孔洞的位置,但是在解析度上有所差異,透地雷達的水平向的解析度較佳,地電阻以Wenner電極排列方式施測的圖徵垂直向的解析度較佳。
3. 由邊坡崩塌地應用成果顯示:將南化水庫集水區地電阻施測結果與地質鑽探結果比對後,能將南179公路之公路邊坡地層區分為回填土層、崩積層與頁岩岩盤,另外藉由甲仙區獻度山地電阻施測結果顯示,地表層如果受到水的入滲,地電阻影像法的解析度足以顯示入滲水擴散的情形。
In this study, a resistivity image profiling (RIP) is applied to three different research areas, the archaeological sites, the concrete-faced embankment, and the landslide sites. In the investigations of the archaeological site, the location of the outer wall ruins of Small Eastern Gate of Taiwan Fucheng was investigated by RIP and ground penetrating radar (GPR). In addition, eroded hole behind the concrete faceplate of embankments at Tainan were also investigated by RIP and GPR to discuss the resolution and accuracy of the two non-destructive testing methods. Meanwhile, the applications of using RIP to the landslide are investigated at landslide slopes at Nanhua reservoir at Tainan and at the Hsien-du-shan site at Chiahsien, Kaohsiung.
1. The studies at the archaeological sites show: (a) In-situ excavation confirmed the applicability of using RIP to the archaeological investigations. (b) The Dipole-Dipole electrode array is affected easily by noise but not for the Wenner and Schlumberger electrode array. (c) If the survey line planning is parallel to the foundation of the ruins, the interpretation is difficult. (d) Comparing the RIP image to the excavation results show that the noise affects the actual size of a total of approximately 1/5 in the image interpretation. (e) The electrical resistivity of the material on the foundation of the Small Eastern Gate is about 300~960Ohm-m. (f) The RIP images correlate well to those of the GPR results in the foundation ruin investigations of the Small Eastern Gate.
2. The study of eroded cave detection behind the concrete faceplate of embankment shows that both GPR and RIP can locate the hole. However, the GPR has high horizontal resolution, but the RIP has high vertical resolution.
3. The site below the ground surface can be divided as backfills, colluvium, and shale based on the RIP image after comparing the RIP image to the in-situ borehole drilling at the Nan-179 highway near the Nanhua reservoir. In addition, the RIP image conducted at the Hsien-du-shan slope shows the infiltration of water to the ground during in-situ hydraulic conductivity tests.
1.中央研究院GIS團隊,「台灣新舊地圖比對-台灣堡圖1898~1904」http://gissrv5.sinica.edu.tw/GoogleApp/JM20k1904_1.htm。
2.水利署網站,「水文水資源資料管理供應系統」,http://gweb.wra.gov.tw/wrweb/。
3.水利署網站,「重要河川-曾文溪」,http://www.wra.gov.tw/ct.asp?xItem=20081&CtNode=4362。
4.王子賓,「結合地電阻影像剖面法及透地雷達法調查DNAPLs之案例研究」,國立中央大學應用地質研究所碩士論文,桃園,台灣,2005。
5.王必昌, 「重修臺灣縣志」, 1753。
6.吳建宏、林政勳、賴新龍,「台灣府城小西門磚牆結構及數值分析之研究」,台灣府城城垣殘跡非破壞探測考古試掘及維護工法研究計畫成果發表研討會,台南,台灣,第139-153頁,2010。
7.宋周燕,「攝影測量和透地雷達在數位典藏上之應用-以台灣府城垣小東門段為例」,國立成功大學土木工程研究所碩士論文,台南,台灣, 2007。
8.李正兆,「整合地電阻法與水文地質調查於崩塌地滑動之機制研究」,國立中央大學地球物理研究所博士論文,桃園,台灣,2009。
9.李德河、許朝景,「府城舊城之透地雷達探測工作說明」,2009府城舊城保存與再生論壇-舊城新談論文集,台南,台灣,第37-45頁, 2009。
10.李德河、賴新龍、李佳原、林政勳、蔡百祥,「台灣府城城垣小東門段構造型式及其使用材料之研究」,台灣府城城垣殘跡非破壞探測考古試掘及維護工法研究計畫成果發表研討會,台南,台灣,第191-204頁,2010。
11.林裕庭、陳燕華,「研發城垣殘跡材料成分之方法」,台灣府城城垣殘跡非破壞探測考古試掘及維護工法研究計畫成果發表研討會,,台南,台灣第119-138頁,2010。
12.祁明松,「地質雷達在隧道內的探測」,地球科學-中國地質大學學報,第18卷,第3期,第352-357頁,1993。
13.邱君豪,「應用透地雷達探測地下埋設物及地層構造之研究」,國立成功大學土木工程研究所碩士論文,台南,台灣,1997。
14.張君仰,「透地雷達於古蹟探測之應用」,國立成功大學土木工程研究所碩士論文,台南,台灣,2004。
15.梅興泰、鄭富書、蔡道賜,「地電阻影像剖面法對非均質地下實體之模擬分析」,技術學刊,第二十一卷,第四期,第369-382頁,2006。
16.郭嘉穎,「混凝土河堤現況檢測評估方法之研究」,國立成功大學土木工程研究所碩士論文,台南,台灣,2006。
17.陳力齊,「應用地電阻量測方法於環境監測與實驗室入滲試驗技術之研究」,嘉南藥理科技大學環境工程與科學研究所碩士論文,台南,台灣,2007。
18.陳宜傑,「應用地電阻法於土石流地滑之研究」,國立中央大學應用地質研究所碩士論文,桃園,台灣,2004。
19.陳昱源,「應用地電阻影像法探測墩基深度之初步研究」,國立成功大學土木工程研究所碩士論文,台南,台灣,2009。
20.詹伯望,「半月沉江話府城」,臺灣建築與文化資產出版,臺南市,2006。
21.達台企業有限公司,「EarthImager 2D & 3D Resistivity Software地電阻資料二維&三為處理軟體操作摘要」,台北,台灣,2010。
22.劉大魁,「GPR與熱影像技術於大地工程之應用研究」,國立成功大學土木工程研究所碩士論文,台南,台灣,2002。
23.劉益昌、江政諭、江亞芸、黃筱倢、顏妏晏,「小東門試掘與歷史考學」,台灣府城城垣殘跡非破壞探測考古試掘及維護工法研究計畫成果發表研討會,台南,台灣,第25-118頁,2010。
24.劉興昌,「活動斷層電性研究-以胡口、新城及山腳斷層為例」,國立中央大學地球物理研究所博士論文,桃園,台灣,2009。
25.黎明工程顧問公司,「南化及鏡面水庫保育治理之研究」,2009。
26.賴新龍、李德河,「透地雷達非破壞性探測在考古選址之運用」,台灣府城城垣殘跡非破壞探測考古試掘及維護工法研究計畫成果發表研討會,台南,台灣,第155-190頁,2010。
27.謝金鑾,「續修臺灣縣志」,1802。
28.羅經書,「透地雷達應用於管線與地層調查之研究」,國立成功大學土木工程研究所碩士論文,台南,台灣,1998。
29.Advanced Geosciences Inc., “Instruction Manual for the SuperStingTM with SwiftTM Automatic Resistivity and IP System Release R1-01.01.38/R8-01.03.41,” Austin, Texas, USA, pp. 1-87, 2006.
30.Advanced Geosciences Inc., “Instruction Manual for EarthImager 2D Version 2.4.0, Resistivity and IP Inversion Software,” Austin, Texas, USA, pp. 1-139, 2009.
31.Bagaloni, V.N., Perdomo, S., and Ainchil, J., “Geoelectric and Magnetic Surveys at La Libertad Archaeological site (San Cayetano County, Buenos Aires Province, Argentina): A Transdisciplinary Approach,” Quaternary International, pp. 1-12, 2011.
32.Bievre, G., Jongmans, D., Winiarski, T., and Zumbo, V., “Application of Geophysical Measurements for Assessing the Role of Fissures in Water Infiltration Within a Clay Landslide (Trieves area, French Alps),” Hydrological Processes, (In Press), pp. 1-15, 2011.
33.Bowling, J.C., Harry, D.L., Rodriguez, A.B., and Zheng, C., “Integrated Geophysical and Geological Investigation of a Heterogeneous Fluvial Aquifer in Columbus Mississippi,” Applied Geophysics, Vol. 62, pp. 58-72, 2007.
34.Burger, H.R., “Exploration Geophysics of the Shallow Subsurface,” Prentice Hall, New Jersey, USA, 1992.
35.Candansayar, M.E., “Two-Dimensional Individual and Joint Inversion of Three- and Four-Electrode Array DC Resistivity Data,” Geophysical Engineering, Vol. 5, pp. 290-300, 2008.
36.Carlsten, S., “Rader Techniques for Indicating Internal Erosion in Embankment Dams,” Geophysics, Vol. 33, pp. 143-156, 1995.
37.Cheng, P.H., “Imaging the Subsurface Structure of the Northern tip of the 1999 Chi-Chi Earthquake Fault in Central Taiwan using the Electric Resistivity Method,” TAO, Vol. 11, NO. 3, pp. 721-734, 2000.
38.Coggon, J.H., “Electromagnetic and Electrical Modeling by the Finite Element Method,” Geophysics, Vol.36, NO.1, pp.132-155, 1971.
39.Constable, S.C., Parker, R.L., and Constable, C.G., “Occam’s Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data,” Geophysics, Vol. 52, NO. 3, pp. 289-300, 1987.
40.Dahlin, T., and Zhou, B., “A Numerical Comparison of 2D Resistivity Imaging with 10 Electrode Arrays,” Geophysical, Vol. 52, pp. 379-398, 2004.
41.Das, B.M., “Principles of Geotechnical Engineering,” Sixth Edition, Thomson Learning, USA, pp. 160, 2006.
42.DeGroot-Hedlin, D., and Constable, S., “Occam's Inversion to Generate Smooth, Two-Dimensional Models from Magnetotelluric Data,” Geophysics, Vol. 55, NO. 12, pp. 1613-1624, 1990.
43.Davis, L., and Annan, A.P., “Ground Penetrating Radar for High Resolution Mapping of Soil and Rock Straigraphy,” Geophysics Prospecting, Vol. 37, pp. 535-551, 1989.
44.Edwards, L.S., “A Modified Pseudosection for Resistivity and IP,” Geophysics, Vol. 42, No. 5, pp. 1020-1036, 1977.
45.Geophysical Survey Systems Inc., “SIR® system-2000 Operation Manual,” USA, pp. 1-87, 2001.
46.Geophysical Survey Systems Inc., “SIRveyor SIR-20 User’s Manual,” USA, pp. 1-51, 2002.
47.Geophysical Survey Systems Inc., “RADAN for Windows Version 5.0 User’s Manual,” USA, pp. 1-132, 2003.
48.Hatton, L., Worthington, M.H., and Makin. J., “Seismic Data Processing: Theory and Practice,” Blackwell Scientific, Oxford, UK, 1986.
49.Hvorslev, M.J., “Time lag in the Observation of Ground-Water Levels and Pressures,” Waterways Experiment Station, pp. 1-37, 1949. (間接引用)
50.Jol, H.M., “Ground Penetrating Radar: Theory and Application,” First Edition, Elsevier Science, Oxford, UK, pp. 1-509, 2009. (Website : http://books.google.com.tw/books?id=y__uIi-5RvgC&pg=PA5&lpg=PA5&dq=GPR+;+maxwell&source=bl&ots=kHrgU48WKw&sig=lGMn2Lfo3GKLEUzwtXaXikMbOLg&hl=zh-TW&ei=4YUNTvGCDczPmAWescHUDg&sa=X&oi=book_result&ct=result&resnum=4&ved=0CDMQ6AEwAw#v=onepage&q=GPR%20%3B%20maxwell&f=false)
51.Kearey, P., and Brooks, M., Hill, I., “An Introduction to Geophysical Exploration-Chapter 8 Electrical Surveying,” Third Edition, Wiley Blackwell, Malden, USA, 2002.
52.Kneisel, C., “Assessment of Subsurface Llithology in Mountain Environments Using 2D Resistivity Imaging,” Geomorphology, Vol. 80, pp. 32-44, 2006.
53.Leopold, M., Gannaway, E., Volkel, J., Haas, F., Becht, M., Heckmann, T., Westphal, M., and Zimmer, G., “Geophysical Prospection of a Bronze Foundry on the Southern Slope of Acropolis at Athens, Greece,” Archaeological Prospection, Vol. 18, pp. 27-41, 2011.
54.Lines, L.R., and Treitel, S., “Tutorial a Review of Least-Squares Inversion and its Application to Geophysical Problems,” Geophysical prospecting, Vol. 32, pp. 159-186, 1984.
55.Loke, M.H., and Dahlin, T., “A Comparison of the Gauss-Newton and Quasi-Newton Methods in Resistivity Imaging Inversion,” Geophysics, Vol. 49, pp. 149-162, 2002.
56.Loke, M.H., “Electrical Imaging Surveys for Environmental and Engineering Studies,” pp. 1-60, 1997-2001. (Website: http://www.terrajp.co.jp/lokenote.pdf)
57.Loke, M.H., and Barker, R. D., “Rapid Least-Squares Inversion of Apparent Resistivity Ppseudosection by a Quasi-Newton Method,” Geophysical Prospecting, Vol.44, pp.499-524, 1996.
58.Lowry, T., Allen, M.B., and Shive, P.N., “Singularity Removal: A Refinement of Resistivity Modeling Techniques,” Geophysics, pp. 766-774, 1989.
59.Maijala, P., “Application of Some Seismic Data Processing Methods to Ground Penetrating Radar Data,” Geological Survey of Finland, pp. 133-138, 1992.
60.Milsom, J., “Field Geophysics,” Third Edition, West Sussex, England, pp. 198-199, 2005.
61.Panek, T., Margielewski, W., Tabonk, P., Urban, J., Hradecky, J., and Szura, C., “Gravitationally Induced Caves and Other Discontinuities Detected by 2D Electrical Resistivity Tomography: Case Studies from the Polish Flysch Carpathians,” Geomorphology, pp. 165-180, 2010.
62.Sheriff, R.E., “Limitations on Resolution of Seismic Reflections and Geologic Detail Derivable from Them,” American Association of Petroleum Geologists Memoir, pp. 3-34, 1977.
63.Szalai, S., and Szarka, L., “On the Classification of Surface Geoelectric Aarrays,” Geophysical Prospecting, Vol. 56, pp. 159-175, 2008.