簡易檢索 / 詳目顯示

研究生: 王雲飛
Wang, Yun-Fei
論文名稱: 正方柱彈性聲子晶體的拓樸能谷邊緣態分析
Elastic Valley Hall Edge State in the Phononic Crystal Composed of Square Rods
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 89
中文關鍵詞: 拓樸絕緣體邊緣模態量子能谷霍爾效應狄拉克錐
外文關鍵詞: topological insulator, edge state, quantum valley Hall effect, dirac cone
相關次數: 點閱:64下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸絕緣體為一種特殊的材料,其本身為絕緣體,但在結構的表面或介面處又能允許電流傳播。近年來許多學者將拓樸絕緣體透過量子霍爾效應、量子自旋霍爾效應以及量子能谷霍爾效應,將其理論類比至光子以及聲子晶體。藉由施加外部場,打破時間反演對稱;或是藉由改變晶格結構,破壞空間反演對稱,使能帶結構中的狄拉克錐張開並使結構發生拓樸相變,進而在介面處激發邊緣模態。本文則探討以正方形散射柱依正方晶格排列所組成之聲子晶體,首先探討散射柱與填充基材之間的填充比對能帶結構之影響,接著進一步旋轉散射柱破壞晶格的空間對稱以拉開狄拉克錐並將結構依散射柱旋轉方向分為兩種不同的結構,在其介面處將可激發邊緣模態,再透有限元素軟體進行全波模擬驗證其應用至彈性波導之可行性。其後再針對填入不同之填充基材,探討其對邊緣模態之影響。
    為了進一步分析材料對邊緣模態之影響,引入具有膨脹性質的負蒲松比材料做為填充基材,發現相比於以一般材料做為填充基材的結構,能帶結構相對複雜且在其他頻段發現類似邊緣模態的模態。而透過全波模擬驗證發現其也同樣具有邊緣模態的性質。

    In this thesis, we studied the acoustic analogue of quantum Hall valley effect with the phononic crystals composed of square rods in the square lattice arrangement. The topological transition occurs in the periodic system by breaking the space inversion symmetry which caused by rotating the rods. The topological edge states can be excited at the interface surface between two structures that are topologically different. In addition, the effects of filling ratios and the rotating angles on the band structure. The finite element commercial software COMSOL Multiphysics® is employed to simulate the propagation of the edge states and the transmission of the elastic wave propagation is shown.
    Furthermore, we introduced the auxetic materials as the matrix of the phononic crystal and the influences of the negative Poisson’s ratio are observed. We found that there exists an edge-like state in the edge-bulk correspondence. It is an edge state because, from the full wave simulation, we observed that the state is immune to backscattering.

    摘要 I Elastic Valley Hall Edge State in the Phononic Crystal Composed of Square Rods II 致謝 X 目錄 XI 圖目錄 XIII 符號說明 XVII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 基本的聲子晶體 2 1-2-2 膨脹材料 3 1-2-3 量子霍爾效應 4 1-2-4 拓樸絕緣體 5 1-3 本文架構 8 第二章 數值方法 14 2-1前言 14 2-2固態物理學基本定義 14 2-2-1倒晶格空間 14 2-2-2 布里淵區(Brillouin zone) 16 2-2-3 布洛赫定理(Bloch theorem) 17 2-3有限元素法 18 2-3-1 平面應力問題 19 2-3-2 結構模組之有限元素法 19 第三章 拓璞絕緣體於正方晶格排列聲子晶體 26 3-1 前言 26 3-2 正方散射柱聲子晶體之拓璞分析 26 3-2-1 色散曲線圖分析 26 3-2-2貝里曲率與能谷陳數 27 3-2-3邊體關係之分析 28 3-2-4邊緣模態應用於聲子晶體彈性波導 29 3-3 改變填充基材材料之分析 30 3-3-1 色散曲線圖分析 30 3-3-2 邊體關係與全波模擬結果討論 31 第四章 拓璞絕緣體於膨脹材料組成之聲子晶體 56 4-1 前言 56 4-2 等效膨脹材料 56 4-3 以膨脹材料為基材之聲子晶體應用於拓璞絕緣體 57 4-3-1 能帶關係與邊體關係 57 4-3-2 全波模擬結果討論 59 第五章 綜合討論與未來展望 80 5-1 綜合結論 80 5-2 未來展望 82 參考文獻 83

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. Vol. 58, No. 20, pp. 2059-2062 (1987)
    [2] S. John, “Strong localization of photons in certain disordered dielectric super-lattices,” Phys. Rev. Lett. Vol. 58, No. 23, pp. 2486-2489 (1987)
    [3] L. Brillouin, “Wave propagation in periodic structures,” 2nd ed. Dover, New York (1953)
    [4] L. Cremer and H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural periodic systms),” Archiv der Elektrischen Ubertragung, Vol.7,261(1953)
    [5] M. A. Heckl, “Investigations on the vibrations of grillage and other simple beam structure,” Journal of the Acoustical Society of America, Vol.36, 1335(1964)
    [6] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. Vol. 71, No. 13, pp. 2022-2025 (1993)
    [7] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B. Vol. 49, No. 4, pp. 2313-2322 (1994)
    [8] M. S. Kushwaha, P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. Vol. 64, No. 9, pp. 1085-1087 (1994)
    [9] M. S. Kushwaha, “Classical band structure of periodic elastic composites,” Int. J. Mod. Phys. B Vol. 10, No. 9, pp. 977-1094 (1996)
    [10] M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Optics Communications,Vol.80,pp.199-204 (1991)
    [11] M. Plihal, A. A. Maradudin, “Photonic band structures of Two-dimensional system:The triangular lattice,” Physical Review B,Vol.44,pp.8565-8571 (1991)
    [12] X. Wang, X. G. Zhang, Q. Yu, B.N. Harmon, “Multiple-scattering theory for electromagnetic wave,” Physical Review B,Vol.47,pp.4161-4167 (1993)
    [13] P. M. Bell, J. B. Pendry, M.Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Computing Physics Communications,Vol.85,pp.306-322 (1995)
    [14] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method.(Norwood,MA:Artech House,1995)
    [15] Love AEH “A treatise on the mathematical theory of elasticity,” 4th edn. Cambridge University Press, Cambridge (1927)
    [16] Baughman R H, Schaklette J M, Zakhidov A A, et al. “Negative Poisson’s ratios as a common feature of cubic metals,” Nature, 392: 362–365 (1998)
    [17] Gibson LJ, Ashby MF, Schajer GS, Roberson CI, “The mechanics of two-dimensional cellular materials,” Proc R Soc Lond A 382 :25–42 (1982)
    [18] Almgren RF, “An isotropic three-dimensional structure with Poisson’s ratio = −1,” J Elast 15 (4):427–430 (1985)
    [19] Lakes R S. “Foam structures with a negative Poisson’s ratio,” Science, 235: 1038–1040 (1987)
    [20] Evans KE, “Auxetic polymers: a new range of materials,” Endeavour 15 (4) :170–174 (1991)
    [21] Prall D, Lakes R, “Properties of chiral honeycomb with a Poisson’s ratio of -1,” International Journal of Mechanical Sciences, 39(3) :305-314 (1997)
    [22] P. S. Theocaris, G. E. Stavroulakis, “Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach,” Arch. Appl. Mech,68 :281 (1998)
    [23] Grima JN, Gatt R, Alderson A, Evans KE, “On the potential of connected stars as auxetic systems,” Mol. Simul., 31: 925-935 (2005)
    [24] Edwin Hall (1879). “On a New Action of the Magnet on Electric Currents” American Journal of Mathematics. 2 (3): 287-92. Doi:10.2307/2369245. JSTOR 2369245. Archived from the original on 2011-07-27. Retrieved 2008-02-28
    [25] K. von Klitzing, G. Dorda, M. Pepper (1980). “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall”. Phusical Review Letters 45 (6) : 494-497. A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nature Phys. 3, 172 (2007).
    [26] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).
    [27] W. Yao, D. Xiao, and Q. Niu, Phys. Rev. B 77, 235406 (2008).
    [28] F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 106, 156801 (2011).
    [29] Z. Zhu, A. Collaudin, B. Fauque, W. Kang, and K. Behnia, Nature Phys. advance online publication, (2011).
    [30] Gerlach, W., Stern, O., 1922, Zeitschrift für Physik, 9, 349.
    [31] H. C. Chan and G. Y. Guo “Tuning topological phase transitions in hexagonal photonics lattices made of triangular rods” Phys. Rev. B 97, 045422 (2018)
    [32] P. Wang, L. Liu and K. Bertoldi “Topological Phononic Crystals with One-Way Elastic Edge Waves” Phys. Rev. Lett. 115, 104302 (2015)
    [33] Z. G. Chen and Y. Wu “Tunable Topological Phononic Crystals” Phys. Rev. Appl. 5, 054021 (2016)
    [34] C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu, L. Feng and Y. F. Chen “Acoustic topological insulator and robust one-way sound transport” Nature Phys. 12, 1124-1129 (2016)
    [35] Y. Guo, T. Dekrosy and M. Hettich “Topological guiding of elastic waves in phononic metamaterials based on 2D pentamode structures” Scientific Reports 7, 18043 (2017)
    [36] S. H. Mousavi, A. B. Khanikaev and Z. Wang “Topologically protected elastic waves in phononic metamaterials” Nature Communications 6, 8682 (2015)
    [37] J. Lin, J. Wang, S. Wu and J. Mei “Pseudospins and topological edge states in elastic shear waves” AIP Advances 7, 125030 (2017)
    [38] S. Yves, R. Fleury, F. Lemoult, M. Fink and G. Lerosey “Topological acoustic polaritons : robust sound manipulation at the subwavelength scale” New J. Phys. 19, (2017)075003
    [39] S. Yves, R. Fleury, F. Lemoult, M. Fink and G. Lerosey “Supplementary for the paper : Topological acoustic polaritons : robust sound manipulation at the subwavelength scale”
    [40] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang and Z. Liu “Observation of topological valley transport of sound in sonic crystals” Nature Phys. 13, 369-374 (2017)
    [41] R. K. Pal and M. Ruzzene “Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect” New J. Phys. 19 (2017) 025001
    [42] X. Ni, M. A Gorlach, A. Alu and A. B Khanikaev “Topological edge states in acoustic Kagome lattices” New J. Phys. 19 (2017) 055002
    [43] J. Vila and R. K. Pal “Observation of topological valley modes in an elastic hexagonal lattice” Phys. Rev. B 96, 134307
    [44] T. W. Liu and F. Semperlotti “Tunable Acoustic Valley-Hall Edge States in Reconfigurable Phononic Elastic Waveguides” Phys. Rev. Appl. 9, 014001 (2018)
    [45] B. Z. Xia, S. J. Zheng, T. T. Liu, J. R. Jiao, N. Chen, H. Q. Dai, D. J. Yu and J. Liu “Observation of valleylike edge states of sound at a momentum away from the high-symmetry point” Phys. Rev. B 97, 155124 (2018)
    [46] J. Mei, Y. Wu, C. T. Chen and Z. Q. Zhang “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals” Phys. Rev. B 86, 035141 (2012)
    [47] J. Lu, C. Qiu, S. Xu, Y. Ye, M. Ke and Z. Liu “Dirac cones in two-dimensional artificial crystals for classical waves” Phys. Rev. B 89, 134302 (2014)
    [48] M. Z. Hasan and C. L. Kane “Colloquium: Topological insulators” Rev. Mod. Phys. 82, 3045 (2010)
    [49] S. Raghu and F. D. M. Haldane “Analogs of quantum-Hall-effect edge states in photonic crystals” Phys. Rev. A 78, 033834 (2008)
    [50] T. Ochiai and M. Onoda “Photonic analog of graphene model and its extension: Dirac con, symmetry, and edge states” Phys. Rev. B 80, 155103 (2009)
    [51] D. Xiao, W. Yao and Q. Niu “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport” Phys. Rev. Lett. 99, 236809 (2007)
    [52] I. Martin, Y. M. Blanter and A. F. Morpurgo “Topological Confinement in Bilayer Graphene” Phys. Rev. Lett. 100, 036804 (2008)
    [53] Evans, Ken E. "Auxetic polymers: a new range of materials." Endeavour 15.4 (1991): 170-174.
    [54] Ma, Tian-Xue, et al. "Elastic band structures of two-dimensional solid phononic crystal with negative Poisson's ratios." Physica B: Condensed Matter 407.21 (2012): 4186-4192.
    [55] Liu, Geng-Ting, et al. "Elastic Dispersion Analysis of Two Dimensional Phononic Crystals Composed of Auxetic Materials." ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015.
    [56] Meng, J., et al. "Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio." Smart Materials and Structures 24.9 (2015): 095011.
    [57] 周椲迪(2016)。可調式膨脹星形蜂巢狀結構之波傳分析。國立成功大學機械系研究所碩士論文,未出版,台灣台南。
    [58] A. Khelif, P. A. Devmier, B. Djafari-Rouhani, J. O. Vasseur and L. Dobrzynski “Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency” Journal of Applied Physics 94, 1308 (2003)
    [59] J. H. Sun and T. T. Wu “Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method” Phys. Rev. B 76, 104304
    [60] A. Khelif, B. Djafari-Rouhani, J. O. Vasseur and P. A. Deumier “Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials” Phys. Rev. B 68, 024302 (2003)
    [61] 張書燁(2017)。膨脹性超常材料之彈性波操控及其應用。國立成功大學機械系研究所碩士論文,未出版,台灣台南。
    [62] FDMHaldane,Modelfor a quantum Hall effect without Landau levels: Condensed-matter realizationof the parity anomaly,Physical Review Letters, Volume61, Issue 18, October 31, 1988, pp.2015-2018
    [63] CL Kane and EJ Mele. Quantum spin halleffect in graphene. Physical Review Letters,95(22):226801, November 2005.
    [64] B. Andrei Bernevig and Shou-Cheng Zhang.Quantum spin hall effect. Physical Review Letters,96(10):106802, March 2006.
    [65] Teik Cheng Lim, “Auxetic Materials and Structures” engineering materials (2015)
    [66] 張天蓉. 硅火燎原- 解讀量子霍爾效應 – 2012. http://blog.sciencenet.cn/blog-677221-739393.html.

    下載圖示 校內:2020-07-31公開
    校外:2020-07-31公開
    QR CODE