| 研究生: |
李佳潔 Lee, Chia-Chieh |
|---|---|
| 論文名稱: |
行人手機導航資訊辨識以及夜間使用顯示設計 Pedestrian’s Recognition of Navigation Information and Design Strategy for Nighttime Navigation with Smartphone Display |
| 指導教授: |
陳建旭
Chen, Chien-Hsu |
| 共同指導教授: |
吳豐光
Wu, Fong-Gong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 擴增實境導航 、行人導航 、夜間顯示設計 、前景介面亮度 、背景介面色調 |
| 外文關鍵詞: | Augmented reality, Pedestrian navigation, Discomfort glare, Night mode, Background color treatment, Foreground lightness |
| 相關次數: | 點閱:156 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立夜間行人擴增實境導航的系統性設計流程,確立擴增實境導航之夜間模式。擴增實境導航與傳統平面鳥瞰式地圖差別在於,擴增實境導航與真實環境有更佳的空間相容性,使用者得以更快辨識方向。擴增實境導航具有兩個訊息管道,分別為前景介面以及背景資訊,而背景資訊之複雜程度則影響前景資訊的辨識。然而,夜間的導航對於行人存在著潛在的危險,因著夜間環境亮度低,以及城市中所設置之LED街燈產生之不適眩光,分散了行人注意力並影響了使用者的視覺辨識速度,以及行人過度關注手機資訊,分心的行為成為發生交通事故的主因。傳統GPS導航具有夜間模式,而擴增導航則尚未建立夜間模式的標準,因此,本研究主旨建立行人擴增實境導航夜間模式,透過分析使用者行為,建立步行導航決策步驟流程圖,並透過前景介面設計排列、視覺群化設計,增加前景資訊的辨識速度,最後分依前景以及背景亮度,最終建立擴增導航夜間模式前景背景組合。
步行導航決策步驟流程圖以尋路互動資源關係模型,以及適地性服務(Location Based Service)為理論基礎建立而成,尋路時行人透過五個方式抵達目的地,分別為尋找方向、沿著標記的路線、定標定位、路徑整合和認知地圖。並透過三個適地性服務功能,導航、資訊以及溝通的功能對應於行人手機導航中。實驗透過半結構式訪談以及脈絡訪查之設計方法,驗證由理論所建構之步行導航決策步驟流程圖,確立行人於新穎環境中所需要獲得的尋路知識、操作行為以及記憶資訊的模式。結果顯示行人高度依賴視覺讀取環境資訊和手機導航資訊,並採用路徑策略進行尋路,該策略於尋路過程中需導航系統提供主要路線名稱、路線與距離資訊,因此,精簡尋路資訊對於行人尋路至關重要,增加使用者觀看環境之注意力。
確立尋路決策所需資訊後,研究依據前景介面視覺參數進行介面設計,邀請人因工程設計師進行設計工作坊,設計規劃前景介面排列、視覺群化設計及提示方式,增加前景資訊的辨識速度。工作坊分為三個步驟:說明行人導航決策流程、說明設計準則以及設計執行。設計結果以KJ法依據群化準則及提示方式進行主題分類,最終獲得五款擴增實境導航介面設計,而五款介面使用 3D Engine Unity 及 Vuforia SDK 構建 AR 擴增導航介面於手機中進行測試,並於實際場域之十字路口進行驗證,以NASA-TLX量表以及導航介面設計準則進行評估。結果顯示設計A中心提示及連接律之介面獲得最顯著的辨識速度、減少觀看時間、視覺壓力以及使用信心,而設計C連續律的介面則於觀看四周的評估項目中獲得最佳成績。
本研究透過使用者導航決策流程及視覺群化設計建立前景介面,確認前景資訊後取樣城市十字路口街景畫面,進行夜間城市亮度分析。十字路口為行人尋路決策點,城市街道中大量的LED路燈以及車燈造成不適眩光,容易使行人發生意外。因此,本研究根據城市亮度分析差異,設計前景介面亮度及背景色調組合,透過背景色調改善城市街道中的不適眩光,並提高低亮度環境之資訊易讀性,透過回憶測驗驗證組合,結果顯示同時使用高亮度區暖色調背景與伽馬校正和前景之亮度65介面為最佳夜間導航前背景組合 (65, W, Ct, Gm),然而考慮主觀感受時則以高亮度區低伽馬為主要組合 (Lg)、 (Lg, Ct),暖色溫色調會主觀的感受。最後,前景背景之亮度對比度影響了整體易讀性,於低亮度環境中設計擴增實境系統介面時,需考慮背景的亮度後進行前景亮度設計,達到最佳的擴增實境夜間模式。
本研究為行人擴增實境導航提供了系統性的設計流程,將人機互動中的三個影響因子納入研究,包含了建立使用者行為導航決策流程、手機前景介面設計以及環境背景亮度的分析與色調修正,最終確立行人擴增實境導航的夜間模式設計。本研究之研究成果提升了夜間閱讀手機資訊之前景背景易讀性,探討了擴增實境導航介面中前景和背景的亮度之間如何相互影響,建立步行導航決策步驟流程圖,並設計擴增實境導航介面,為夜間行人安全建立了設計的準則,以及為擴增實境應用於低亮度環境之介面設計做出貢獻。
In this study, we established a systematic design process for augmented-reality (AR) navigation for pedestrians. Augmented-reality navigation differs from the conventional bird's-eye-view map in that the former has better spatial compatibility with the real environment, allowing pedestrians to determine their travel directions rapidly. Augmented-reality navigation involves two information channels: foreground interface and background information. The complexity of the background information affects the recognition of the foreground information. However, this does involve some potential dangers for pedestrians navigating at night. The dim lighting conditions of nighttime environments cause poor visual recognition. In addition, pedestrians pay excessive attention to mobile phone texts or notifications, which is the main cause of traffic accidents. Hence, this study established a decision procedure framework of navigation, aiming to (1) reduce the wayfinding behavior of excessively looking at a mobile phone, (2) increase the legibility of foreground information through a foreground interface design flow and visual design grouping, and (3) create the AR navigation night mode for pedestrians.
After validating the decision-making process and the design of the foreground interface, the brightness of a city environment at night was analyzed, and street scenes of urban traffic intersections were sampled. The study considered that pedestrians are prone to accidents at crossroads owing to a large number of LED streetlights and vehicle glare in urban areas, which causes pedestrians to be distracted, including occurrences of inattentional blindness caused by distracted mobile phone operation. Thus, the city's brightness was analyzed, designed background color treatments were, and improved the glare caused to reduce discomfort and enhance the legibility of background information. The result indicated that the high luminance area in warm color, gamma correction, and a foreground brightness of 65 in the Lab Color mode was the optimal combination to facilitate a user paying attention to both foreground and background information for nighttime navigation. However, considering subjective perception, the main combination is a high luminance area in low gamma (Lg), (Lg, Ct). The color treatment of high-luminance areas has decreased the nighttime glares problem. Therefore, this study established an augmented-reality navigation design process and created a display design for nocturnal usage of augmented-reality navigation, considering pedestrian behavior, foreground design, environmental brightness, and background color treatment processing.
Adam, M.-B., &Lee, S. (2011). Are we reaching peak travel? trends in passenger transport in eight industrialized countries. Transport Reviews, 31(3), 357–378. https://doi.org/10.1080/01441647.2010.518291
Ahn, E., Lee, S., & Kim, G. J. (2018). Real-time adjustment of contrast saliency for improved information visibility in mobile augmented reality. Virtual Reality, 22(3), 245–262. https://doi.org/10.1007/s10055-017-0319-y
Allen, G. L. (1999). Spatial abilities, cognitive maps, and wayfinding. Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, 4680, 46–80.
Allen, G. L., Kirasic, K. C., Dobson, S. H., Long, R. G., & Beck, S. (1996). Predicting environmental learning from spatial abilities: An indirect route. Intelligence, 22(3), 327–355.
Andersen, E., & Maier, A. (2019). The attentional guidance of individual colours in increasingly complex displays. Applied Ergonomics, 81, 102885. https://doi.org/https://doi.org/10.1016/j.apergo.2019.102885
Arthur, P., & Passini, R. (1992). Wayfinding: people, signs, and architecture.
Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience. https://doi.org/10.1016/j.neuroscience.2005.08.023
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355–385.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.
Baldwin, C. L., & Reagan, I. (2009). Individual differences in route-learning strategy and associated working memory resources. Human Factors, 51(3), 368–377.
Barbur, J. L., & Stockman, A. (2010). Photopic, mesopic and scotopic vision and changes in visual performance. Encyclopedia of the Eye, 3, 323–331. https://doi.org/10.1016/B978-0-12-374203-2.00233-5
Behrens, R. R. (1998). Art, Design and Gestalt Theory. LEONARDO, 31(4), 299–303.
Bertin, J. (1984). Semiology of graphics: diagrams, networks, maps.
Bovy, P. H., & Stern, E. (2012). Route choice: Wayfinding in transport networks: Wayfinding in transport networks (Vol. 9). Springer Science & Business Media.
Braunstein-Bercovitz, H. (2003). Does stress enhance or impair selective attention? The effects of stress and perceptual load on negative priming. Anxiety, Stress and Coping. https://doi.org/10.1080/10615800310000112560
Burigat, S., Chittaro, L., & Gabrielli, S. (2008). Navigation techniques for small-screen devices: An evaluation on maps and web pages. International Journal of Human-Computer Studies, 66(2), 78–97.
Ceci, L. (2021). Leading mapping apps in the united states in 2020, by downloads. Jul. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
Chameau, J.Lou, & Santamarina, J. C. (1987). Membership functions I: Comparing methods of measurement. International Journal of Approximate Reasoning, 1(3), 287–301. https://doi.org/10.1016/S0888-613X(87)80003-8
Chan, A. H. S., & Lee, P. S. K. (2005). Effect of display factors on Chinese reading times, comprehension scores and preferences. Behaviour & Information Technology, 24(2), 81–91.
Chang, H. (2013). Study of Wayfinding Behavior of Independent International Travelers in an Unfamiliar City. Journal of Outdoor Recreation Study, 26(2), 77–103.
Chao, C.-W., Huang, C. H., & Tsai, T. (2013). The Age Effects of Traffic Signs on Visual Performance. Life Science Journal, 10(1), 297–302.
Cheng, Y., Zhen, L., Jian-qing, Z., & Wu ming-auang. (2014). Effect of environmental illumination on optimal value of mobile phone brightness. 液晶与显示, 6, 1042–1049. https://doi.org/http://dx.doi.org/10.3788/YJYXS20142906.1042
Chi, C. F., Cai, D., & You, M. (2003). Applying image descriptors to the assessment of legibility in Chinese characters. Ergonomics, 46(8), 825–841. https://doi.org/10.1080/0014013031000109214
Chih-Hung Wu, Liu, C.-J., Tzeng, Y.-L., & Hsu, J.-W. (2012). Combined Attention Features of Eye Tracking and Brain Wave to Construct the Optimal Color Allocation for iPad Electronic Book. Journal of National United University., 9(1), 199–215.
Chun, L. M., & Lin, S. H. (2014). A study on the Covers of “Industry and Information Technology” Magazine, using grouping principle. Journal of Cagst, 411–431. https://doi.org/10.30153/JCAGST
Cornell, E. H., Heth, C. D., & Alberts, D. M. (1994). Place recognition and way finding by children and adults. Memory & Cognition, 22(6), 633–643.
Deb, S., Carruth, D. W., Sween, R., Strawderman, L., & Garrison, T. M. (2017). Efficacy of virtual reality in pedestrian safety research. Applied Ergonomics, 65, 449–460. https://doi.org/10.1016/j.apergo.2017.03.007
Detenber, B. H., & Reeves, B. (1996). A bio-informational theory of emotion: Motion and image size effects on viewers. Journal of Communication.
Dobres, J., Chahine, N., & Reimer, B. (2017). Effects of ambient illumination, contrast polarity, and letter size on text legibility under glance-like reading. Applied Ergonomics, 60, 68–73. https://doi.org/10.1016/j.apergo.2016.11.001
Dobres, J., Chahine, N., Reimer, B., Gould, D., & Zhao, N. (2016). The effects of Chinese typeface design, stroke weight, and contrast polarity on glance based legibility. Displays. https://doi.org/10.1016/j.displa.2015.12.001
Dobres, J., Wolfe, B., Chahine, N., & Reimer, B. (2018). The effects of visual crowding, text size, and positional uncertainty on text legibility at a glance. Applied Ergonomics, 70, 240–246.
Dommès, A. (2019). Street-crossing workload in young and older pedestrians. Accident Analysis & Prevention, 128, 175–184.
Doustar, M. F., & Hassanpour, H. (2010). A locally-adaptive approach for image gamma correction. 10th International Conference on Information Sciences, Signal Processing and Their Applications, ISSPA 2010, 73–76. https://doi.org/10.1109/ISSPA.2010.5605505
DüNser, A., Billinghurst, M., Wen, J., Lehtinen, V., & Nurminen, A. (2012). Exploring the use of handheld AR for outdoor navigation. Computers & Graphics, 36(8), 1084–1095.
Fabroyir, H., & Teng, W. C. (2018). Navigation in virtual environments using head-mounted displays: Allocentric vs. egocentric behaviors. Computers in Human Behavior, 80, 331–343. https://doi.org/10.1016/j.chb.2017.11.033
Gabbard, J. L., Mehra, D. G., & Swan, J. E. (2018). Effects of AR display context switching and focal distance switching on human performance. IEEE Transactions on Visualization and Computer Graphics, 25(6), 2228–2241.
Gabbard, J. L., Smith, M., Merenda, C., Burnett, G., & Large, D. R. (2020). A Perceptual Color-Matching Method for Examining Color Blending in Augmented Reality Head-Up Display Graphics. IEEE Transactions on Visualization and Computer Graphics.
Gabbard, J. L., Swan, J. E., Hix, D., Kim, S.-J., & Fitch, G. (2007). Active text drawing styles for outdoor augmented reality: A user-based study and design implications. 2007 IEEE Virtual Reality Conference, 35–42.
Gabbard, J. L., Swan, J. E., Zedlitz, J., & Winchester, W. W. (2010). More than meets the eye: An engineering study to empirically examine the blending of real and virtual color spaces. 2010 IEEE Virtual Reality Conference (VR), 79–86.
Gattullo, M., Uva, A. E., Fiorentino, M., & Gabbard, J. L. (2015). Legibility in industrial AR: Text style, color coding, and illuminance. IEEE Computer Graphics and Applications, 35(2), 52–61.
Gibson, B. S., &Kingstone, A. (2006). Visual attention and the semantics of space: Beyond central and peripheral cues. Psychological Science, 17(7), 622–627.
Gibbons, R. B., & Edwards, C. J. (2007). A review of disability and discomfort glare research and future direction. 18th Biennial TRB Visibility SymposiumTransportation Research Board.
Goble, C., Harper, S., & Stevens, R. (2000). The Travails of Visually Impaired Web Travellers. Proceedings of the Eleventh ACM on Hypertext and Hypermedia, 1–10. https://doi.org/10.1145/336296.336304
Goldstein, E. B., & Vanhorn, D. (2008). Cognitive psychology: Connecting mind, research, and everyday experience (Vol. 59). Thomson Wadsworth Belmont, CA.
Allen, G. L. (1999). Spatial abilities, cognitive maps, and wayfinding: Bases for individual differences in spatial cognition and behavior. In Wayfinding behavior: Cognitive mapping and other spatial processes.
Golledge, R. G. (2003). Human wayfinding and cognitive maps. In The Colonization of Unfamiliar Landscapes (pp. 49–54). Routledge.
Google AI Blog. (2019). Using Global Localization to Improve Navigation. Google AI Blog. https://ai.googleblog.com/2019/02/using-global-localization-to-improve.html
Grahn, I. (2017). The vuforia sdk and unity3d game engine: Evaluating performance on android devices.
Haberlandt, K. (1997). Cognitive psychology. Allyn & Bacon.
Halik, Ł. (2018). The analysis of visual variables for use in the cartographic design of point symbols for mobile Augmented Reality applications. Geodesy and Cartography. https://doi.org/10.2478/v10277-012-0019-4
Halik, Ł., & Medyńska-Gulij, B. (2017). The Differentiation of Point Symbols using Selected Visual Variables in the Mobile Augmented Reality System. Cartographic Journal, 54(2), 147–156. https://doi.org/10.1080/00087041.2016.1253144
Hanington, B., & Martin, B. (2012). Universal methods of design: 100 ways to research complex problems. In Develop Innovative Ideas. https://www.iitgn.ac.in/sites/default/files/library_files/2016/04072016.pdf%5Cnpapers3://publication/uuid/FD316216-3845-47B5-B7DA-0E68CD4B3014
Harrison, B. L., & Vicente, K. J. (1996). An experimental evaluation of transparent menu usage. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 391–398.
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139–183). Elsevier.
Hidayetoglu, M. L., Yildirim, K., & Akalin, A. (2012). The effects of color and light on indoor wayfinding and the evaluation of the perceived environment. Journal of Environmental Psychology, 32(1), 50–58.
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2003). Navigation, Principles of positioning and guidance. SpringerWien New York. ISBN 978-3-211-00828-4.
Huang, D. L., Patrick Rau, P. L., & Liu, Y. (2009). Effects of font size, display resolution and task type on reading Chinese fonts from mobile devices. International Journal of Industrial Ergonomics, 39(1), 81–89. https://doi.org/10.1016/j.ergon.2008.09.004
Ishikawa, T., &Takahashi, K. (2013). Relationships between methods for presenting information on navigation tools and users’ wayfinding behavior. Cartographic Perspectives, 75, 17–28. https://doi.org/10.14714/cp75.82
Jaeyong, O. H., Park, S., & Kwon, O.-S. (2016). Advanced navigation aids system based on augmented reality. International Journal of E-Navigation and Maritime Economy, 5, 21–31.
Jankowski, J., Samp, K., Irzynska, I., Jozwowicz, M., & Decker, S. (2010). Integrating text with video and 3d graphics: The effects of text drawing styles on text readability. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1321–1330.
Jetter, J., Eimecke, J., & Rese, A. (2018). Augmented reality tools for industrial applications: What are potential key performance indicators and who benefits? Computers in Human Behavior. https://doi.org/10.1016/j.chb.2018.04.054
Jiang, L., Liu, Z., Zhang, G., & Li, Z. (2018). The Development of A Potential Head-Up Display Interface Graphic Visual Design Framework for Driving Safety by Consuming Less Cognitive Resource of Driver. Journal of Physics: Conference Series, 1098(1), 12006.
Jin, H., Jin, S., Chen, L., Cen, S., & Yuan, K. (2015). Research on the lighting performance of LED street lights with different color temperatures. IEEE Photonics Journal, 7(6), 1–9.
Jones, T. M., & Kiran, K. P. (2020). Learnability: An Inevitable Skill Needed for Sustenance in Industry 4.0. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(3).
Lin, J.-S., & Chen, I.-P. (2003). Quantitative measure of the advancing/receding and the expansion/ constriction nature of colors. [National Chiao Tung University]. https://ir.nctu.edu.tw/handle/11536/60691?
Luck, S. J., & Thomas, S. J. (1999). What variety of attention is automatically captured by peripheral cues? Perception & Psychophysics, 61(7), 1424–1435.
Katan, S., Grierson, M., & Fiebrink, R. (2015). Using interactive machine learning to support interface development through workshops with disabled people. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 251–254.
Kato, Y., & Takeuchi, Y. (2003). Individual differences in wayfinding strategies. Journal of Environmental Psychology, 23(2), 171–188.
Kim, S., & Dey, A. K. (2009). Simulated augmented reality windshield display as a cognitive mapping aid for elder driver navigation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 133–142.
Kluge, M., & Asche, H. (2012). Validating a smartphone-based pedestrian navigation system prototype. International Conference on Computational Science and Its Applications, 386–396.
Koehler, S., Goldhammer, M., Bauer, S., Zecha, S., Doll, K., Brunsmann, U., & Dietmayer, K. (2013). Stationary detection of the pedestrian? s intention at intersections. IEEE Intelligent Transportation Systems Magazine, 5(4), 87–99.
Kuo, M.-T. (2002). A cognitive study ofhazardous labeling terms and colors. [College of Pharmacy & Science]. In CNIS9114. http://ir.cnu.edu.tw/handle/310902800/1330
Lawton, C. A. (1994). Gender Differences in Way-finding Strategies:Relationship to Spatial Ability and Spatial Anxiety. Sex Roles, 30(11/12), 765–779. https://doi.org/Doi 10.1007/Bf01544230
Lawton, C. A. (1996). Strategies for indoor wayfinding: The role of orientation. Journal of Environmental Psychology, 16(2), 137–145.
Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47(9–10), 389–401. https://doi.org/10.1023/A:1021668724970
Lee, C.-C., Chen, C.-H., Chien, W.-C., & Wu, F.-G. (2022). Improving pedestrians’ safety at nighttime intersections by enhancing legibility of foreground and background in a mobile navigation interface. International Journal of Industrial Ergonomics, in press. https://doi.org/10.1016/j.ergon.2022.103383
Lee, C.-C., & Wu, F.-G. (2018). Travel Navigation Design and Innovative Operation Mode. International Conference of Design, User Experience, and Usability, 603–613.
Lee, C.-C., Wu, F.-G., & Chen, C.-H. (2021). Information arrangement in augmented reality walking navigation interface based on capacity theory of attention: To facilitate decision making (Issue September). World Design Organization (WDO).
Lee, C. C., & Wu, F. G. (2019). Innovative tourism navigation operation process and decision making. PervasiveHealth: Pervasive Computing Technologies for Healthcare, 259–263. https://doi.org/10.1145/3305160.3305175
Lee, C. S., Chang, Y. C., & Wang, M. H. (2009). Ontological recommendation multi-agent for Tainan City travel. Expert Systems with Applications, 36(3 PART 2), 6740–6753. https://doi.org/10.1016/j.eswa.2008.08.016
Lee, H., Bang, S., & Woo, W. (2020). Effects of Background Complexity and Viewing Distance on an AR Visual Search Task. 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 189–194.
Lee, W., & Benbasat, I. (2003). Designing an electronic commerce interface: attention and product memory as elicited by web design. Electronic Commerce Research and Applications, 2(3), 240–253.
Limei, C., & Jiansheng, Q. (2009). Night color image enhancement using fuzzy set. Proceedings of the 2009 2nd International Congress on Image and Signal Processing, CISP’09, 1–4. https://doi.org/10.1109/CISP.2009.5303500
Lu, W., Duh, B.-L. H., & Feiner, S. (2012). Subtle cueing for visual search in augmented reality. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 161–166.
Matsuura, Y., Terada, T., Aoki, T., Sonoda, S., Isoyama, N., & Tsukamoto, M. (2019). Readability and legibility of fonts considering shakiness of head mounted displays. Proceedings - International Symposium on Wearable Computers, ISWC, 150–159. https://doi.org/10.1145/3341163.3347748
Merry, K., & Bettinger, P. (2019). Smartphone GPS accuracy study in an urban environment. PloS One, 14(7), e0219890.
Motta, M. (2018). American Medical Association Statement on Street Lighting. Journal of the American Association of Variable Star Observers (JAAVSO), 46(2), 193.
Mourant, R. R., & Rockwell, T. H. (1972). Strategies of visual search by novice and experienced drivers. Human Factors, 14(4), 325–335.
Muilu, T., Nguyen, N., & Dirin, A. (2018). Rapid Mobile Augmented Reality Prototyping With Unity, Vuforia, and 3D Modeling. ICERI2018 Proceedings, 10023–10032.
Mulloni, A., Seichter, H., & Schmalstieg, D. (2011). Enhancing Handheld Navigation Systems with Augmented Reality. Proc. Mobile Augmented Reality Workshop at MobileHCI2011, 7–10. http://data.icg.tugraz.at/~dieter/publications/Schmalstieg_212.pdf
Natapov, A., & Fisher-Gewirtzman, D. (2016). Visibility of urban activities and pedestrian routes: An experiment in a virtual environment. Computers, Environment and Urban Systems, 58, 60–70.
Oh, H., Fiore, A. M., & Jeoung, M. (2007). Measuring experience economy concepts: Tourism applications. Journal of Travel Research, 46(2), 119–132.
Osberger, W. M., Maeder, A. J., & Bergmann, N. W. (1998). Perceptually based quantization technique for MPEG encoding. Human Vision and Electronic Imaging III, 3299, 148–159.
Palinko, O., Kun, A. L., Cook, Z., Downey, A., Lecomte, A., Swanson, M., & Tomaszewski, T. (2013). Towards augmented reality navigation using affordable technology. Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 238–241.
Park, S., Park, S. H., Park, L. W., Park, S., Lee, S., Lee, T., Lee, S. H., Jang, H., Kim, S. M., & Chang, H. (2018). Design and implementation of a smart IoT based building and town disaster management system in smart city infrastructure. Applied Sciences, 8(11), 2239.
Pielot, M., & Rello, L. (2017). Productive, anxious, lonely - 24 hours without push notifications. Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI 2017, 1–11. https://doi.org/10.1145/3098279.3098526
Popelka, S., Vondrakova, A., & Skulnikova, R. (2022). The Effect of Day and Night Mode on the Perception of Map Navigation Device. 2022 Symposium on Eye Tracking Research and Applications, 1–6.
Portnov, B. A., Saad, R., Trop, T., Kliger, D., & Svechkina, A. (2020). Linking nighttime outdoor lighting attributes to pedestrians’ feeling of safety: An interactive survey approach. PloS One, 15(11), e0242172.
Prestopnik, J. L., & Roskos–Ewoldsen, B. (2000). The relations among wayfinding strategy use, sense of direction, sex, familiarity, and wayfinding ability. Journal of Environmental Psychology, 20(2), 177–191.
Qin, Z., & Li, Z. (2017). Grouping rules for effective legend design. The Cartographic Journal, 54(1), 36–47.
Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-Quaderi, G. D., & Shoyaib, M. (2016). An adaptive gamma correction for image enhancement. EURASIP Journal on Image and Video Processing, 2016(1), 1–13.
Rao, Y., Lin, W. Y., & Chen, L. (2010). Image-based fusion for video enhancement of night-time surveillance. Optical Engineering, 49(12), 1–3. https://doi.org/10.1117/1.3520553
Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2017). Agreeing to cross: How drivers and pedestrians communicate. 2017 IEEE Intelligent Vehicles Symposium (IV), 264–269.
Richard, R., & Schwartz, S. (2021). Pedestrian traffic fatalities by state.
Sanders, M. S., & McCormick, E. J. (1998). Human factors in engineering and design. McGraw-Hill New York.
Schall, G., Schöning, J., Paelke, V., & Gartner, G. (2011). A survey on augmented maps and environments: approaches, interactions and applications. Advances in Web-Based GIS, Mapping Services and Applications, 9, 207.
Schmitz, S. (1999). Gender differences in acquisition of environmental knowledge related to wayfinding behavior, spatial anxiety and self-estimated environmental competencies. Sex Roles, 41(1–2), 71–93. https://doi.org/10.1023/A:1018837808724
Schnell, T., Aktan, F., & Li, C. (2004). Traffic sign luminance requirements of nighttime drivers for symbolic signs. Transportation Research Record, 1862(1), 24–35.
Silla, A., Dressler, A., Lehtonen, E., Virtanen, A., Mesimäki, J., & Grippenkoven, J. (2022). Potential of auxiliary strobe lights on train locomotives to improve level crossing safety. Applied Ergonomics, 103, 103767.
Skorka, O., & Joseph, D. (2011). Toward a digital camera to rival the human eye. Journal of Electronic Imaging, 20(3), 33009.
Słomiński, S. (2016). Identifying problems with luminaire luminance measurements for discomfort glare analysis. Lighting Research & Technology, 48(5), 573–588.
Snyder, H. L. (1988). Image quality. In Handbook of human-computer interaction (pp. 437–474). Elsevier.
Tan, L., Wang, C., & Li, H. (2018). Impact of the Size of Chinese Characters on the Visual Search Performance Under Vibration. International Conference on Human-Computer Interaction, 345–354.
Tan, S.-K., Kung, S.-F., & Luh, D.-B. (2013). A model of ‘creative experience’in creative tourism. Annals of Tourism Research, 41, 153–174.
Tram, T. M. T., & Callum, P. (2020). Designing exocentric pedestrian navigation for AR head mounted displays. Conference on Human Factors in Computing Systems - Proceedings, 1–8. https://doi.org/10.1145/3334480.3382868
Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: evidence from search asymmetries. Psychological Review, 95(1), 15.
Vertegaal, R., Shell, J. S., Chen, D., & Mamuji, A. (2006). Designing for augmented attention: Towards a framework for attentive user interfaces. Computers in Human Behavior, 22(4), 771–789.
Villa, C., Bremond, R., & Saint-Jacques, E. (2017). Assessment of pedestrian discomfort glare from urban LED lighting. Lighting Research & Technology, 49(2), 147–172.
Wang, H., Li, D., Wang, Q., Schwebel, D. C., Miao, L., & Shen, Y. (2022). How distraction affects pedestrian response: evidence from behavior patterns and cortex oxyhemoglobin changes. Transportation Research Part F: Traffic Psychology and Behaviour, 91, 414–430.
Wang, X., & Dunston, P. S. (2006). Compatibility issues in Augmented Reality systems for AEC: An experimental prototype study. Automation in Construction, 15(3), 314–326.
Wickens, C. D., & Flach, J. M. (1988). 5 - Information Processing. In E. L.Wiener & D. C.Nagel (Eds.), Human Factors in Aviation (pp. 111–155). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-057090-7.50011-4
Winter, D., & Koger, S. (2021). Cognitive Psychology. In The Psychology of Environmental Problems. Allyn & Bacon. https://doi.org/10.4324/9781410610737-13
Wu, F.-G., Lee, Y.-J., & Chen, C.-H. (2003). Evaluation of the realistic effect of image compositing to assist in curtain selection. International Journal of Industrial Ergonomics, 32(1), 1–12.
Yared, T., & Patterson, P. (2020). The impact of navigation system display size and environmental illumination on young driver mental workload. Transportation Research Part F: Traffic Psychology and Behaviour, 74, 330–344.
Yau, Y.-J., Chao, C.-J., & Hwang, S.-L. (2008). Optimization of Chinese interface design in motion environments. Displays, 29(3), 308–315.
Zhu, Y., & Li, N. (2021). Virtual and augmented reality technologies for emergency management in the built environments: A state-of-the-art review. Journal of Safety Science and Resilience, 2(1), 1–10. https://doi.org/10.1016/j.jnlssr.2020.11.004
Zollmann, S., Kalkofen, D., Mendez, E., & Reitmayr, G. (2010). Image-based ghostings for single layer occlusions in augmented reality. 2010 IEEE International Symposium on Mixed and Augmented Reality, 19–26.
經濟部能源局(Bureau of Energy, M. of E. A. (2015). 全臺設置 LED 路燈技術規範.
Chen Yiping. (2011). 視覺心理學[Visual psychology]. 雙葉書廊.