簡易檢索 / 詳目顯示

研究生: 曾慧明
Chung, Her-Min
論文名稱: 亨廷頓相關蛋白40過度表現對於細胞微管動力及粒線體形態的影響
Effects of HAP40 Overexpression on Microtubule Dynamics and Mitochondrial Morphological States
指導教授: 何盧勳
Her, Lu-Shiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 94
外文關鍵詞: Huntingtin, Huntingtin-associated protein 40, Huntington’s disease, Microtubule, Mitochondria
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Huntington’s disease (HD) is an inherited neurodegenerative disease caused by elongation of polyglutamine in mutant huntingtin (Htt) protein. Mutant Htt causes various mitochondrial functional impairments and bioenergetics dysfunctions. Besides, it also causes increase of mitochondrial fragmentation and alteration of mitochondrial morphology as well as distribution. Aggregates of mutant Htt could also impair trafficking and causes mitochondrial or cellular membranes damage. Previous study showed that Htt-HAP40 (Htt-associated protein 40) complex is an effector of Rab5 that regulates dynamics of early endosomes. Moreover, endogenous level of HAP40 is increased in patient’s brain samples, animal and cell models of HD. Hence, up-regulation of HAP40 might involve in the pathogenesis of HD. To date, its function remains unclear. Microtubule is suggested as crucial factor for mitochondria distribution and regulation. Moreover, autophagy pathway that is essential for clearance of aggregates prone proteins required an intact microtubule cytoskeleton. Therefore, it was presumed that microtubule and diversification of mitochondrial morphology as well as autophagy are interrelated.
    In present study, it was found that HAP40 is associated with microtubules via microtubule co-sedimentation assay. Besides, results of nocodazole treatment suggested that HAP40 might exert mild impact on microtubule dynamics. Based on images of immunocytochemistry, HAP40 overexpressed cells exhibited imbalance of mitochondrial fusion/fission events where level of fragmented mitochondria is increased. Further, ATP assay showed that overexpression of HAP40 exhibited a trend of low ATP level, suggesting that mitochondria function is affected. Likewise, current study also observed that STHdh Q111/Q111 (striatal cells expressing mutant Htt) demonstrated more fragmented mitochondria as compared to STHdh Q7/Q7 (striatal cells expressing wild-type Htt), which are consistent with previous study. Also, immunocytochemistry images revealed that impairment of mitochondrial fusion/fission dynamics in STHdh Q111/Q111 and HAP40 overexpressed cells is able to be rescued by wild-type Htt rather than Tubastatin A treatment. However, both wild-type Htt and Tubastatin A treatment have high tendency in reverting low ATP level of STHdh Q111/Q111 and HAP40 overexpressed cells, based on results obtained from ATP assay. On the other hand, present study noticed that autophagic activities were greatly activated in both STHdh Q111/Q111 and HAP40 overexpressed cells instead of mitophagy, indicating that inefficient clearance of damaged mitochondria could be the factor that results in accumulation of abnormal or impaired mitochondria in HD.

    Abstract I Acknowledgements III Table of Contents III List of Figures VII Abbreviations VIII Chapter 1: Introduction 1 1.1 Polyglutamine Diseases 1 1.2 Huntington’s disease 2 1.3 Huntingtin (Htt) Protein 3 1.4 Huntingtin associated protein 40 (HAP40) 5 1.5 Microtubule-based Transport, Mitochondria fusion-fission and Autophagy in Huntington’s disease 6 1.5.1 Microtubule-based Transport 6 1.5.2 Mitochondria fusion-fission 7 1.5.3 Autophagy 9 1.6 Microtubule Dynamics 10 1.7 Microtubule-Targeting Agents 13 Objectives of Study 14 Chapter 2: Materials and Methods 16 2.1 Chemicals 16 2.2 Antibodies 16 2.3 Plasmids 17 2.4 Cell lines 17 2.5 Subculturing Cell Lines 18 2.6 Subculturing Cell Lines: Cell Counting 18 2.7 Cryopreservation of Cell Culture 19 2.8 Thawing of Cell Culture 20 2.9 Transfection 20 2.10 Immunocytochemistry 21 2.11 Microtubule Co-sedimentation Assay 22 2.12 Western Blot 24 2.12.1 Protein Extraction 24 2.12.2 Protein Assay 25 2.12.3 SDS-PAGE 25 2.13 Nocodazole treatment 28 2.14 Tubastatin A treatment 29 2.15 ATP Assay 30 2.16 Statistical Analysis 30 Chapter 3: Results 31 3.1 Effects of nocodazole-induced microtubule disruption on STHdh Q7/Q7 and STHdh Q111/Q111 cells 31 3.2 Microtubule co-sedimentation assay 32 3.3 Effects of nocodazole-induced microtubule disruption on HAP40-overexpressed cells 33 3.4 Diversity of mitochondrial morphology and basal level of ATP in STHdh Q7/Q7 and STHdh Q111/Q111 cells 34 3.5 Effects of Tubastatin A-induced HDAC6 inhibition on mitochondrial morphology of STHdh Q7/Q7 and STHdh Q111/Q111 cells 36 3.6 Effects of Htt-Q23F overexpression on mitochondrial morphology of STHdh Q7/Q7 and STHdh Q111/Q111 cells 37 3.7 Effects of Tubastatin A and Htt-Q23F overexpression on ATP synthesis of STHdh Q7/Q7 and STHdh Q111/Q111 cells 38 3.8 Effects of HAP40 overexpression on mitochondrial morphology and ATP synthesis 38 3.9 Effects of Tubastatin A-induced HDAC6 inhibition on mitochondrial morphology of HAP40-overexpressed cells 39 3.10 Effects of Htt-Q23F overexpression on mitochondrial morphology of HAP40-overexpressed cells 40 3.11 Effects of Tubastatin A and Htt-Q23F overexpression on ATP synthesis of HAP40-overexpressed cells 40 3.12 Autophagy and mitophagy activities in STHdh Q7/Q7 and STHdh Q111/Q111 cells 41 3.13 Autophagy and mitophagy activities in HAP40-overexpressed cells 42 Chapter 4: Discussion 43 References 51 Figures and Figure Legends 62

    Ahmad, F.J., T.P. Pienkowski, and P.W. Baas. 1993. Regional differences in microtubule dynamics in the axon. The Journal of Neuroscience. 13:856-865.
    Andrew, S.E., Y.P. Goldberg, B. Kremer, H. Telenius, J. Theilmann, S. Adam, E. Starr, F. Squitieri, B.Y. Lin, M.A. Kalchman, R.K. Graham, and M.R. Hayden. 1993. The Relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's Disease. Nature. 4:398-403.
    Baas, P.W., T. Slaughter, A. Brown, and M.M. Black. 1991. Microtubule dynamics in axons and dendrites. Journal of Neuroscience Research. 30:134-153.
    Barsoum, M.J., H. Yuan, A.A. Gerencser, G. Liot, Y.E. Kushnareva, S. Graber, I. Kovacs, W.D. Lee, J. Waggoner, J. Cui, A.D. White, B. Bossy, J.C. Martinou, R.J. Youle, S.A. Lipton, M. Ellisman, G. Perkins, and E. Bossy-Wetzel. 2006. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. The EMBO Journal. 25:3900-3911.
    Barton, J.S., D.L. Vandivort, D.H. Heacock, J.A. Coffman, and K.A. Trygg. 1987. Microtubule assembly kinetics. Biochemical Journal. 247:505-511.
    Becher, M.W., J.A. Kotzuk, A.H. Sharp, S.W. Davies, G.P. Bates, D.L. Price, and C.A. Ross. 1998. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiology of Disease. 4.
    Bennett, E.J., T.A. Shaler, B. Woodman, K.Y. Ryu, T.S. Zaitseva, C.H. Becker, G.P. Bates, H. Schulman, and R.R. Kopito. 2007. Global changes to the ubiquitin system in Huntington's disease. Nature. 448:704-708.
    Block-Galarza, J., K. Chase, E. Sapp, K.T. Vaughn, R.B. Vallee, M. DiFiglia, and N. Aronin. 1997. Fast transport and retrograde movement of huntingtin and HAP1 in axons. Neuro Report. 8:2247-2251.
    Bossy-Wetzel, E., M.J. Barsoum, A. Godzik, R. Schwarzenbacher, and S.A. Lipton. 2003. Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion in Cell Biology. 15:706-716.
    Cattaneo, E., D. Rigamonti, D. Goffredo, C. Zuccato, F. Squitieri, and S. Sipione. 2001. Loss of normal huntingtin function: new developments in Huntington's disease research. Trends in Neurosciences. 24:182-188.
    Cattaneo, E., D. Rigamonti, and C. Zuccato. 2002. The Enigma of Huntington's Disease. Scientific American.
    Cepeda, C., M.A. Ariano, C.R. Calvert, J. Flores-Hernandez, S.H. Chandler, B.R. Leavitt, M. Hayden, and M.S. Levine. 2001. NMDA receptor function in mouse models of Huntington disease. Journal of Neuroscience Research. 66:525-539.
    Chang, D.T., G.L. Rintoul, S. Pandipati, and I.J. Reynolds. 2006. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiology of Diseases. 22:388-400.
    Chen, H., and D.C. Chan. 2006. Critical dependence of neurons on mitochondrial dynamics. Current Opinion in Cell Biology. 18:453-459.
    Chen, N., T. Luo, C. Wellington, M. Metzler, M. McCutcheon, M. R.Hayden, and L. A.Raymond. 1999. Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. Journal of Neurochemistry. 72:1890-1898.
    Chu, C.W., F. Hou, J. Zhang, L. Phu, A.V. Loktev, D.S. Kirkpatrick, P.K. Jackson, Y. Zhao, and H. Zou. 2011. A novel acetylation of beta-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Molecular Biology of the Cell. 22:448-456.
    Colomer, V., S. Engelender, A.H. Sharp, K. Duan, J.K. Cooper, A. Lanahan, G. Lyford, P. Worley, and C.A. Ross. 1997. Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain. Human Molecular Genetics. 6:1519-1525.
    Costa, V., M. Giacomello, R. Hudec, R. Lopreiato, G. Ermark, D. Lim, W. Malorni, K. J. A. Davies, E. Carafoli, and L. Scorrano. 2010. Mitoochondria fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Molecular Medicine. 2:490-503.
    Damiano, M., L. Galvan, N. Deglon, and E. Brouillet. 2010. Mitochondria in Huntington's disease. Biochimica et Biophysica Acta. 1802:52-61.
    Davies, S.W., S. Beardsail, M. Turmaine, M. DiFiglia, N. Aronin, and G.P. Bates. 1998. Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions. The LANCET. 351.
    DiFiglia, M. 1997. Aggregation of Huntingtin in Neuronal Intranuclear Inclusions and Dystrophic Neurites in Brain. Science. 277:1990-1993.
    DiFiglia, M., E. Sapp, K. Chase, C. Schwarz, A. Meloni, c. Young, E. Martin, J.P. Vonsattel, R.R. Carraway, S.A. Reeves, F. M. Boyce, and N. Aronin. 1995. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron. 14:1075-1081.
    Ding, W.X., and X.M. Yin. 2012. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry. 393:547-564.
    Dompierre, J.P., J.D. Godin, B.C. Charrin, F.P. Cordelieres, S.J. King, S. Humbert, and F. Saudou. 2007. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 27:3571-3583.
    Engelender, S., A.H. Sharp, V. Colomer, M.K. Tokito, A. Lanahan, P. Worley, E.L.F. Holzbaur, and C.A. Ross. 1997. Huntingtin-associated protein 1 (HAP1) interacts with the p150 glued subunit of dynactin. Human Molecular Genetics. 6:2205-2212.
    Faber, P.W., G.T. Barnes, J. Srinidhi, J. Chen, J.F. Gusella, and M.E. MacDonald. 1998. Huntingtin interacts with a family of WW domain proteins. Human Molecular Genetics. 7:1463-1474.
    Fengsrud, M., M. Lunde Sneve, A. Overbue, and P.O. Seglen. 2004. Structural aspects of mammalian autophagy. In Autophagy. D. Klionsky, editor. Landes Bioscience, Georgetown, Texas, USA and Eureka. com, Austin Texas, USA.
    Fojo, A.T. 2009. The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Humana Press.
    Frederick, R.L., and J.M. Shaw. 2007. Moving mitochondria: establishing distribution of an essential organelle. Traffic. 8:1668-1675.
    Gabaizadeh, R., H. Staecker, W. Liu, and T.R. Van De Water. 1997. BDNF protection of auditory neurons from cisplatin involves changes in intracellular levels of both reactive oxygen species and glutathione. Molecular Brain Research. 50:71-78.
    Gauthier, L.R., B.C. Charrin, M. Borrell-Pages, J.P. Dompierre, H. Rangone, F.P. Cordelieres, J. De Mey, M.E. MacDonald, V. Lessmann, S. Humbert, and F. Saudou. 2004. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 118:127-138.
    Gines, S., I.S. Seong, E. Fossale, E. Ivanova, F. Trettel, J.F. Gusella, V.C. Wheeler, F. Persichetti, and M.E. MacDonald. 2003. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice. Human Molecular Genetics. 12:497-508.
    Goldstein, L.S.B., and Z. Yang. 2000. Microtubule-based transport systems in neurons the roles for kinesisn and dyneins. Animal Reviews Neuroscience. 23:39-71.
    Guedes-Dias, P., and J.M. Oliveira. 2013. Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochimica et Biophysica Acta. 1832:1345-1359.
    Gunawardena, S., L.S. Her, R.G. Brusch, R.A. Laymon, I.R. Niesman, B. Gordesky-Gold, L. Sintasath, N.M. Bonini, and L.S.B. Goldstein. 2003. Disruption of Axonal Transport by Loss of Huntingtin or Expression of Pathogenic PolyQ Proteins in Drosophila. Neuron. 40:25-40.
    Gutekunst, C.A., S.H. Li, Z. Murphy, S. Kuemmerie, R. Jones, D. Rye, R.J. Ferrante, S.M. Hersch, and X.J. Li. 1999. Nuclear and neuropil aggregates in Huntington's disease relationship to neuropathology. The Journal of Neuroscience. 19:2522-2534.
    Haggarty, S.J., K.M. Koeller, J.C. Wong, C.M. Grozinger, and S.L. Schreiber. 2003. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Science. 100:4389-4394.
    Hammond, J.W., D. Cai, and K.J. Verhey. 2008. Tubulin modifications and their cellular functions. Current Opinion of Cell Biology. 20:71-76.
    Han, X.J., Y.F. Lu, S.A. Li, T. Kaitsuka, Y. Sato, K. Tomizawa, A.C. Nairn, K. Takei, H. Matsui, and M. Matsushita. 2008. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. The Journal of Cell Biology. 182:573-585.
    Harjes, P., and E.E. Wanker. 2003. The hunt for huntingtin function: interaction partners tell many different stories. Trends in Biochemical Sciences. 28:425-433.
    Haun, F., T. Nakamura, A.D. Shiu, D.H. Cho, T. Tsunemi, E.A. Holland, A.R. La Spada, and S.A. Lipton. 2013. S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington's disease. Antioxidants & Redox Signaling. 19:1173-1184.
    Hauser, D.N., and T.G. Hastings. 2013. Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism. Neurobiology of Disease. 51:35-42.
    Heggeness, M.H., J.F. Ash, and S.J. Singer. 1978. Transmembrane linkage of fibronectin to intracellular actin-containing filaments in cultured human fibroblasts. The New York Academy of Sciences:414-417.
    Heng, M.Y., P.J. Detloff, P.L. Wang, J.Z. Tsien, and R.L. Albin. 2009. In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. The Journal of Neuroscience. 29:3200-3205.
    Hoffner, G., P. Kahlem, and P. Djian. 2001. Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with β-tubulin: relevance to Huntington's disease. Journal of Cell Science. 115:941-948.
    Hong, S.J., T.M. Dawson, and V.L. Dawson. 2004. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends in Pharmacological Sciences. 25:259-264.
    Hubbert, C., A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.F. Wang, and T.P. Yao. 2002. HDAC6 is a microtubule-associated deacetylase. Nature. 417:455-458.
    Iwata, A., B.E. Riley, J.A. Johnston, and R.R. Kopito. 2005. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. The Journal of Biological Chemistry. 280:40282-40292.
    James, D.I., P.A. Parone, Y. Mattenberger, and J.C. Martinou. 2003. hFis1, a novel component of the mammalian mitochondrial fission machinery. The Journal of Biological Chemistry. 278:36373-36379.
    Jin, Y.N., and G.V. Johnson. 2010. The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. Journal of Bioenergetics and Biomembranes. 42:199-205.
    Jin, Y.N., Y.V. Yu, S. Gundemir, C. Jo, M. Cui, K. Tieu, and G.V. Johnson. 2013. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PloS one. 8:e57932.
    Kawaguchi, Y., J.J. Kovacs, A. McLaurin, J.M. Vance, A. Ito, and T.P. Yao. 2003. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 115:727-738.
    Kim, J., J.P. Moody, C.K. Edgerly, O.L. Bordiuk, K. Cormier, K. Smith, M.F. Beal, and R.J. Ferrante. 2010. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Human Molecular Genetics. 19:3919-3935.
    Kirschner, M., and T. Mitchison. 1986. Microtubule dynamics. Nature. 324.
    Knott, A.B., G. Perkins, R. Schwarzenbacher, and E. Bossy-Wetzel. 2008. Mitochondrial fragmentation in neurodegeneration. Nature Reviews Neuroscience. 9:505-518.
    Kochl, R., X.W. Hu, E.Y. Chan, and S.A. Tooze. 2006. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic. 7:129-145.
    Kozikowski, A.P., Y. Chen, A. Gaysin, B. Chen, M.A. D' Annibale, C.M. Suto, and B.C. Langley. 2007. Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. Journal of Medicinal Chemistry 50:3054-3061.
    Leavitt, B.R., J.M. van Raamsdonk, J. Shehadeh, H. Fernandes, Z. Murphy, R.K. Graham, C.L. Wellington, L.A. Raymond, and M.R. Hayden. 2006. Wild-type huntingtin protects neurons from excitotoxicity. Journal of Neurochemistry. 96:1121-1129.
    Levine, M.S., G.J. Klapstein, A. Koppel, E. Gruen, C. Cepeda, M.E. Vargas, E.S. Jokel, E.M. Carpenter, H. Zanjani, R.S. Hurst, A. Efstratiadis, S. Zeitlin, and M.F. Chesselet. 1999. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. Journal of Neuroscience Research. 58:515-532.
    Levinson, B., J.R. Bermingham, A. Merzenberg, S. Kenwrick, V. Chapman, and J. Gitschier. 1992. Sequence of the human factor VIII-associated gene is conserved in mouse. Genomics. 13:862-865.
    Li, H., S.H. Li, Z.X. Yu, P. Shelbourne, and X.J. Li. 2001. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. The Journal of Neuroscience. 21:8473-8481.
    Li, S.H., C.A. Gutekunst, S.M. Hersh, and X.J. Li. 1996. Interaction of Huntingtin-associated protein with dynactin p150glued. The Journal of Neuroscience. 18:1261-1269.
    Li, S.H., and X.J. Li. 2004. Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends in Genetics. 20:146-154.
    Li, X.J., S.H. Li, A.H. Sharp, F.C. Nucifera, G. Schilling, A. Lanahan, P. Worley, S.H. Sayderm, and C.A. Ross. 1995. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 378:398-402.
    Lu, R., H. Wang, Z. Liang, L. Ku, T. O'Donnell W, W. Li, S.T. Warren, and Y. Feng. 2004. The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proceedings of the National Academy of Sciences. 101:15201-15206.
    Mai, S., M. Klinkenberg, G. Auburger, J. Bereiter-Hahn, and M. Jendrach. 2010. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. Journal of Cell Science. 123:917-926.
    Mammucari, C., and R. Rizzuto. 2010. Signaling pathways in mitochondrial dysfunction and aging. Mechanisms of Ageing and Development. 131:536-543.
    Martin, J.B., and J.F. Gusella. 1986. Huntingtons Disease. New England Journal of Medicine. 315:1267-1276.
    Martinez-Vicente, M., Z. Talloczy, E. Wong, G. Tang, H. Koga, S. Kaushik, R. de Vries, E. Arias, S. Harris, D. Sulzer, and A.M. Cuervo. 2010. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nature Neuroscience. 13:567-576.
    Matsuyama, A., T. Shimazu, Y. Sumida, A. Saito, Y. Yoshimatsu, D. Seigneurin-Berny, H. Osada, Y. Komatsu, H. Nishino, S. Khochbin, S. Horinouchi, and M. Yoshida. 2002. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. The EMBO Journal. 21:6820-6831.
    Mclines, J. 2013. Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegenration. Translational Neurodegeneration. 2.
    Miller, A.M., B.F. Deighan, E. Downer, A. Lyons, P. Henrich-Noack, Y. Nolan, and M.A. Lynch. 2011. Neurodegenerative diseases-processes, prevention, protection and monitoring. C.C. Chuen, editor. InTech.
    North, B.J., B.L. Marshall, M.T. Borra, J.M. Denu, and E. Verdin. 2003. The human Sir2 ortholog, SIRT2, is an NAD+dependent tubulin deacetylase. Molecular Cell. 11:437-444.
    Ohkawa, N., S. Sugisaki, E. Tokunaga, K. Fujitani, T. Hayasaka, M. Setou, and K. Inokuchi. 2008. N-acetyltransferase ARD1-NAT1 regulates neuronal dendritic development. Genes to Cells : Devoted to Molecular & Cellular Mechanisms. 13:1171-1183.
    Pal, A., F. Severin, B. Lommer, A. Schevchenko, and M. Zerial. 2006. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. Journal of Cell Biology. 172:605-618.
    Pennuto, M., and F. Sambataro. 2010. Pathogenesis of Polyglutamine Diseases.
    Peters, M.F., and C.A. Ross. 2001. Isolation of a 40-kDa Huntingtin-associated protein. The Journal of Biological Chemistry. 276:3188-3194.
    Politis, M., N. Pavese, Y.F. Tai, S.J. Tabrizi, R.A. Barker, and P. Piccini. 2008. Hypothalamic involvement in Huntington's disease: an in vivo PET study. Brain : A Journal of Neurology. 131:2860-2869.
    Quintanilla, R.A., and G.V. Johnson. 2009. Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Brain Research Bulletin. 80:242-247.
    Ravikumar, B., S. Imarisio, S. Sarkar, C.J. O'Kane, and D.C. Rubinsztein. 2008. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. Journal of Cell Science. 121:1649-1660.
    Ravikumar, B., C. Vacher, Z. Berger, J.E. Davies, S. Luo, L.G. Oroz, F. Scaravilli, D.F. Easton, R. Duden, C.J. O'Kane, and D.C. Rubinsztein. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genetics. 36:585-595.
    Reddy, P.H., P. Mao, and M. Manczak. 2009. Mitochondrial structural and functional dynamics in Huntington's disease. Brain Research Reviews. 61:33-48.
    Reddy, P.H., and U.P. Shirendeb. 2012. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochimica et Biophysica Acta. 1822:101-110.
    Reed, N.A., D. Cai, T.L. Blasius, G.T. Jih, E. Meyhofer, J. Gaertig, and K.J. Verhey. 2006. Microtubule acetylation promotes kinesin-1 binding and transport. Current Biology. 16:2166-2172.
    Ross, C.A. 1995. When More Is Less Pathogenesis of Glutamine Repeat Neurodegenerative Diseases. Cell Press. 15:493-496.
    Sakakibara, A., R. Ando, T. Sapir, and T. Tanaka. 2013. Microtubule dynamics in neuronal morphogenesis. Open Biology. 3:130061.
    Salminen, A., T. Tapiola, P. Korhonen, and T. Suuronen. 1998. Neuronal apoptosis induced by histone deacetylase inhibitors. Molecular Brain Research. 61:203-206.
    Sarkar, S., J.E. Davies, Z. Huang, A. Tunnacliffe, and D.C. Rubinsztein. 2007. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. The Journal of Biological Chemistry. 282:5641-5652.
    Schuyler, S.C., and D. Pellman. 2001. Microtubule "Plus-End-Tracking Proteins": The End is Just the Beginning. Cell. 105:421-424.
    Shao, J., and M.I. Diamond. 2007. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Human Molecular Genetics. 16 Spec No. 2:R115-123.
    Sharp, A.H., S. J. Loev, G. Schilling, S.H. Li, X.J. Li, J. Bao, M. V. Wagster, J. A. Kotzuk, J. P. Steiner, A. Lo, J. Hedreen, S. Sisodia, S. H. Snyder, T. M. Dawson, D. K. Ryugo, and C.A. Ross. 1995. Widespread Expression of Huntington's Disease Gene (IT15) Protein Product. Neuron. 14:1066-1074.
    Sharp, A.H., and C.A. Ross. 1996. Neurobiology of Huntington’s Disease. Neurobiology of Disease. 3:3-15.
    Shirendeb, U., M.J. Calkins, M. Manczak, V. Anekonda, B. Dufour, J.L. McBride, P. Mao, and P.H. Reddy. 2012. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. Human Molecular Genetics. 21:406-420.
    Shirendeb, U., A.P. Reddy, M. Manczak, M.J. Calkins, P. Mao, D.A. Tagle, and P.H. Reddy. 2011. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Human Molecular Genetics. 20:1438-1455.
    Sittler, A., S. Walter, N. Wedemeyer, R. Hasenbank, E. Scherzinger, H. Eickhoff, G.P. Bates, H. Lehrach, and E.E. Wanker. 1998. SH3GL3 associates with the Huntington exon 1 protein and promotes the formation of polygln-containing protein aggregates. Molecular Cell. 2:427-436.
    Smith, D.S., M. Niethammer, R. Ayala, Y. Zhou, M.J. Gambello, A. Wynshaw-Boris, and L.H. Tsai. 2000. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biology. 2:767-775.
    Solans, A., A. Zambrano, M. Rodriguez, and A. Barrientos. 2006. Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Human Molecular Genetics. 15:3063-3081.
    Song, W., J. Chen, A. Petrilli, G. Liot, E. Klinglmayr, Y. Zhou, P. Poquiz, J. Tjong, M.A. Pouladi, M.R. Hayden, E. Masliah, M. Ellisman, I. Rouiller, R. Schwarzenbacher, B. Bossy, G. Perkins, and E. Bossy-Wetzel. 2011. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nature Medicine. 17:377-382.
    Spargo, E., I.P. Everall, and P.L. Lantos. 1993. Neuronal loss in the hippocampus in Huntington's disease: a comparison with HIV infection. Journal of Neurology, Neurosurgery, and Psychiatry. 56:487-491.
    Szebenyi, G., G.A. Morfini, A. Babcock, M. Gould, K. Selkoe, D.L. Stenoien, M. Young, P.W. Faber, M.E. MacDonald, M.J. McPhaul, and S.T. Brady. 2003. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron. 40:41-52.
    Taguchi, N., N. Ishihara, A. Jofuku, T. Oka, and K. Mihara. 2007. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. The Journal of Biological Chemistry. 282:11521-11529.
    The Huntington's Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide Repeat that is expanded and unstable on Huntington's disease chromosomes. Cell Press. 72:971-983.
    Thompson, L.M. 2008. A question of balance. Nature. 452:707-708.
    Trettle, F., D. Rigamonti, P. Hidlitch-Maguire, V.C. Wheeler, A.H. Sharp, F. Persichetti, E. Cattaneo, and M.E. MacDonald. 2000. Dominant phenotypes produced by HD mutation in STHdhQ111 striatal cells. Human Molecular Genetics. 9:2799-2809.
    Trottier, Y., D. Devys, G. Imbert, F. Saudou, I. An, Y. Lutz, C. Weber, Y. Agid, E. C. Hirsch, and J.L. Mandel. 1995. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genetics. 10.
    Trushina, E., R.B. Dyer, J.D. Badger, 2nd, D. Ure, L. Eide, D.D. Tran, B.T. Vrieze, V. Legendre-Guillemin, P.S. McPherson, B.S. Mandavilli, B. Van Houten, S. Zeitlin, M. McNiven, R. Aebersold, M. Hayden, J.E. Parisi, E. Seeberg, I. Dragatsis, K. Doyle, A. Bender, C. Chacko, and C.T. McMurray. 2004. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Molecular and Cellular Biology. 24:8195-8209.
    Turmaine, M., A. Raza, A. Mahal, L. Mangiarini, G.P. Bates, and S.W. Davies. 2000. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America. 97:8093-8097.
    Vonsattel, J.P., and M. DiFiglia. 1998. Huntington Disease. Journal of Neuropathology & Experimental Neurology. 57:369-384.
    Vonsattel, J.P., R.H. Myers, T.J. Stevens, R.J. Ferrante, E.D. Bird, and E.P. Richardson, Jr. 1985. Neuropathological classification of Huntington's disease. Journal of Neuropathology and Experimental Neurology. 44:559-577.
    Waelter, S., E. Scherzinger, R. Hasenbank, E. Nordhoff, R. Lurz, H. Goehler, C. Gauss, K. Sathasivam, G. P. Bates, H. Lehrach, and E. E. Wanker. 2001. The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis. Human Molecular Genetics. 10:1807-1817.
    Wang, H., P.J. Lim, M. Karbowski, and M.J. Monteiro. 2009. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Human Molecular Genetics. 18:737-752.
    Watson, D.F., P.N. Hoffman, and J.W. Griffin. 1990. The cold stability of microtubules increases during axonal maturation. The Journal of Neuroscience. 10:3344-3352.
    Winklhofer, K.F., and C. Haass. 2010. Mitochondrial dysfunction in Parkinson's disease. Biochimica et Biophysica Acta. 1802:29-44.
    World Health Organization. Genes and human disease: Huntington's Disease.
    Xie, R., S. Nguyen, W.L. McKeehan, and L. Liu. 2010. Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biology. 11.
    Xie, Z.P., and J. Klionsky. 2007. Autophagosome formation core machinery and adaptations. Nature Cell Biology. 9:1102-1109.
    Youle, R.J., and M. Karbowski. 2005. Mitochondrial fission in apoptosis. Nature. 6:657-663.
    Zeron, M.M., N. Chen, A. Moshaver, A.T. Lee, C.L. Wellington, M.R. Hayden, and L.A. Raymond. 2001. Mutant huntingtin enhances excitotoxic cell death. Molecular and Cellular Neuroscience. 17:41-53.
    Zeron, M.M., O. Hansson, N. Chen, C. L. Wellington, B.R. Leavitt, P. Brundin, M. R.Hayden, and N. A. Raymond. 2002. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron. 33:849-860.
    Zhang, Y., N. Li, C. Caron, G. Matthias, D. Hess, S. Khochbin, and P. Matthias. 20003. HDAC6 interacts with and deacetylates tubulin and microtubules in vivo. The EMBO Journal. 22:1168-1179.
    Zu, T. 2004. Recovery from Polyglutamine-Induced Neurodegeneration in Conditional SCA1 Transgenic Mice. Journal of Neuroscience. 24:8853-8861.

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE