簡易檢索 / 詳目顯示

研究生: 李婕華
Lee, Chieh-Hua
論文名稱: 開發一雙功能自組裝單層修飾策略應用於高選擇性捕獲循環腫瘤細胞
Development of a Bifunctional Self-assembled Monolayer Modification Strategy for Highly Selective Capture of Circulating Tumor Cells
指導教授: 吳炳慶
Wu, Ping-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 79
中文關鍵詞: 循環腫瘤細胞捕捉無銅點擊化學環狀精氨酸-甘氨酸-天冬氨酸微流道
外文關鍵詞: Circulating tumor cells capture, cyclic RGD, click chemistry, microfluidics
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織的預測,預計 2040 年將出現 2940 萬例新癌症病例,且每 6 人中就有 1 人死於癌症,其中,大約有 九成的癌症相關死亡歸因於癌症轉移。因此,早期發現以及監測轉移和預後對於癌症的預防和治療至關重要。循環系統中存在循環腫瘤細胞 (CTC) 代表著轉移的可能性,因此 CTC 的分析可用於早期癌症檢測並提供個性化治療所需的信息。 CTCs可以通過微創的液體活檢從血液中分離出來,但它也面臨兩大挑戰,其中之一是血液中CTCs的稀有性和癌細胞表現的高度細胞異質性。
    我們提出了一種方便、經濟、無催化劑的自組裝單層修飾策略,具有高效的廣譜 CTC 捕獲能力和有效的白細胞排斥性。在本研究中,設計並比較了兩種修飾策略的目標細胞捕獲效率和純度。一種利用 PEG 分子,另一種依賴於以最佳比例的氨基矽烷與氟矽烷進行修飾而創造出的雙功能自組裝單層,再將對癌細胞過表達蛋白αvβ3 顯示出強親和力的環狀精氨酸-甘氨酸-天冬氨酸 (RGD)以無銅點擊化學共價接枝到表面。X 射線光電子能譜 (XPS)、傅立葉變換紅外光譜 (FTIR) 和白光干涉儀 (WLI) 用於分析表面化學,而 αvβ3 蛋白在不同細胞系(Jurkat, RAW 264.7, MDA-MB-231、A549 和 BxPC-3)中的表達水平通過流式細胞術檢測。癌細胞捕獲的效率和純度是通過微流體進行的。我們的結果顯示了 84.6% 的捕獲效率和 89.1% 的捕獲純度。

    According to the WHO forecast, an estimated 29.4 million new cancer cases will occur in 2040, and 1 in 6 deaths will be caused by cancer. Approximately 90% of cancer-related deaths are attributed to metastasis. Therefore, early detection of cancer, monitoring of metastases, and prognosis are essential for prevention and treatment. Circulating tumor cells (CTCs) in the circulatory system represents the possibility of metastasis, so the analysis of CTCs can be utilized for early cancer screening and providing information needed for personalized treatment. CTCs can be separated from the blood by liquid biopsy with a minimally invasive, but it also faces two major challenges, one of which is the rarity of CTCs in blood and the high level of cell heterogeneity in cancer cells.
    Here, we report a modification strategy for a convenient, cost-effective, and catalyst-free SAM with efficient broad-spectrum CTC capture ability and effective leukocyte attachment repellency. In this study, two modified strategies were designed and compared for cell capture efficiency and purity. One utilized the PEG molecule, and one depended on the modification with an optimal ratio of amino-silanes to fluoro-silanes to create the bifunctional SAM, and then the cyclic RGD peptide which showed strong affinity to αvβ3 integrin (the cancer cell overexpression protein) were covalently grafted onto the surface by copper-free click reaction. X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and White Light Interferometry (WLI) were used to characterize the surface chemistry, while the expression level of αvβ3 protein in different cell lines (Jurkat, RAW 264.7, MDA-MB-231, A549, and BxPC-3) were detected by flow cytometry. The efficiency and purity of cancer cell capture were performed by microfluidics. Our result shows 84.6% capture efficiency and 89.1% capture purity.

    摘要 I Abstract II 誌謝 III Acknowledgements V Contents VI List of Figures IX List of Tables X List of Abbreviations XI Chapter 1 Introduction 1 1.1 Cancer and CTCs 1 1.1.1 Cancer 1 1.1.2 Circulating tumor cells (CTCs) 2 1.2 Clinically common cancer detection methods 4 1.2.1 Medical imaging 4 1.2.2 Tissue biopsy 4 1.2.3 Liquid biopsy 5 1.3 The tumor circulome 5 1.3.1 Circulating tumor proteins 5 1.3.2 Circulating tumor nucleic acids 6 1.3.3 Circulating tumor cells (CTCs) 6 1.3.4 Tumor-derived extracellular vesicles (tdEVs) 7 1.4 Advantage of CTC detection 8 1.5 Existing CTCs isolation strategy 9 1.5.1 Label-independent isolation strategies 10 1.5.1.1 Based on size of tumor cells 10 1.5.1.2 Based on density of tumor cells 11 1.5.1.3 Based on dielectric properties of tumor cells 12 1.5.1.4 Based on the adhesion ability of tumor cells 12 1.5.2 Label-dependent isolation strategies 13 1.6 The specific aims and strategy 14 1.6.1 Cancer biomarker: αvβ3 integrin 15 1.6.2 Targeting ligand: RGD peptide 15 1.6.3 Spacer 17 1.6.4 Crosslinker: DBCO-PEG-NHS 17 1.6.5 Amino-silanes & fluoro-silane 18 Chapter 2 Methods and Materials 20 2.1 Materials 20 2.2 Cell culture and staining 21 2.3 SAM modification 21 2.4 Contact angle 22 2.5 X-ray Photoelectron Spectroscopy (XPS) 22 2.6 Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy 23 2.7 FITC conjugating for amine presenting 23 2.8 Protein absorption 24 2.9 White Light Interferometry 24 2.10 Cytotoxicity 25 2.11 Cell capture efficiency 25 2.12 Flowcytometry 26 2.13 Microfluidic CTCs capture 27 2.14 Data Analysis and Statistical Evaluation 27 Chapter 3 Result 28 3.1 RGD immobilized PEG SAM (RPS) 28 3.1.1 Modification strategy 28 3.1.2 RGD immobilization 30 3.1.3 Cell capture efficiency of RPS surface 33 3.2 RGD immobilized bifunctional SAM (RBS) 35 3.2.1 Bioactivity fluorinated surfaces Modification strategy 35 3.2.2 The presence of fluorine on modified surface 38 3.2.3 Quantification of amine groups with FITC 41 3.2.4 Wettability of surface 43 3.2.5 FTIR of functionated surface 46 3.2.6 Protein absorption 48 3.2.7 Cytotoxicity verification 51 3.2.8 Cell capture efficiency of RBS 53 3.2.9 Alpha V beta 3 integrin expression level in cells 57 3.3 Microfluidic CTCs capture 59 Chapter 4 Discussion 64 4.1 The ability of PEG to resist nonspecific attachment 64 4.2 An alternative strategy for optimizing anti-adhesion ability: Introduction of fluoride 66 4.3 Differences in the controllability of FTES and PFTCS 66 4.4 The optimized ratio of APTES to FTES 68 4.5 Specific cell capture efficiency 68 4.6 Non-specific attachment repellency properties: protein and blood cell 69 4.7 Capture performance of microfluidics test 70 Chapter 5 Conclusion 71 Reference 73

    1. Organization, W.H., WHO report on cancer: setting priorities, investing wisely and providing care for all. 2020.
    2. Siegel, R.L., et al., Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 2022. 72(1): p. 7-33.
    3. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021. 71(3): p. 209-249.
    4. Wang, H., et al., Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 2016. 388(10053): p. 1459-1544.
    5. Anand, P., et al., Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharmaceutical Research, 2008. 25(9): p. 2097-2116.
    6. Ashkenazi, R., S.N. Gentry, and T.L. Jackson, Pathways to Tumorigenesis—Modeling Mutation Acquisition in Stem Cells and Their Progeny. Neoplasia, 2008. 10(11): p. 1170-IN6.
    7. Loeb, K.R. and L.A. Loeb, Significance of multiple mutations in cancer. Carcinogenesis, 2000. 21(3): p. 379-385.
    8. Gupta, G.P. and J. Massagué, Cancer Metastasis: Building a Framework. Cell, 2006. 127(4): p. 679-695.
    9. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
    10. Bogenrieder, T. and M. Herlyn, Axis of evil: molecular mechanisms of cancer metastasis. Oncogene, 2003. 22(42): p. 6524-36.
    11. Massagué, J. and A.C. Obenauf, Metastatic colonization by circulating tumour cells. Nature, 2016. 529(7586): p. 298-306.
    12. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
    13. Yu, M., et al., Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 2013. 339(6119): p. 580-4.
    14. Tam, W.L. and R.A. Weinberg, The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med, 2013. 19(11): p. 1438-49.
    15. Perea Paizal, J., S.H. Au, and C. Bakal, Squeezing through the microcirculation: survival adaptations of circulating tumour cells to seed metastasis. British Journal of Cancer, 2021. 124(1): p. 58-65.
    16. Labelle, M., S. Begum, and R.O. Hynes, Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 2011. 20(5): p. 576-90.
    17. Le Gal, K., et al., Antioxidants can increase melanoma metastasis in mice. Sci Transl Med, 2015. 7(308): p. 308re8.
    18. Nagrath, S., et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007. 450(7173): p. 1235-9.
    19. Choi, Y.E., J.W. Kwak, and J.W. Park, Nanotechnology for early cancer detection. Sensors (Basel), 2010. 10(1): p. 428-55.
    20. Zhang, Y., et al., Nanotechnology in cancer diagnosis: progress, challenges and opportunities. Journal of Hematology & Oncology, 2019. 12(1): p. 137.
    21. Overman, M.J., et al., Use of Research Biopsies in Clinical Trials: Are Risks and Benefits Adequately Discussed? Journal of Clinical Oncology, 2013. 31(1): p. 17-22.
    22. Wong, S.Q., et al., Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genomics, 2014. 7: p. 23.
    23. De Rubis, G., S. Rajeev Krishnan, and M. Bebawy, Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends in Pharmacological Sciences, 2019. 40: p. 172-186.
    24. Siravegna, G., et al., Integrating liquid biopsies into the management of cancer. Nature Reviews Clinical Oncology, 2017. 14(9): p. 531-548.
    25. Kanikarla-Marie, P., et al., Platelets, circulating tumor cells, and the circulome. Cancer and Metastasis Reviews, 2017. 36(2): p. 235-248.
    26. Wan, J.C.M., et al., Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Reviews Cancer, 2017. 17(4): p. 223-238.
    27. Joosse, S.A. and K. Pantel, Tumor-Educated Platelets as Liquid Biopsy in Cancer Patients. Cancer Cell, 2015. 28(5): p. 552-554.
    28. Pinsky, P.F., P.C. Prorok, and B.S. Kramer, Prostate Cancer Screening — A Perspective on the Current State of the Evidence. New England Journal of Medicine, 2017. 376(13): p. 1285-1289.
    29. Surinova, S., et al., Non-invasive prognostic protein biomarker signatures associated with colorectal cancer. EMBO Molecular Medicine, 2015. 7(9): p. 1153-1165.
    30. STROUN, M., et al., The Origin and Mechanism of Circulating DNA. Annals of the New York Academy of Sciences, 2000. 906(1): p. 161-168.
    31. Parkinson, C.A., et al., Exploratory Analysis of TP53 Mutations in Circulating Tumour DNA as Biomarkers of Treatment Response for Patients with Relapsed High-Grade Serous Ovarian Carcinoma: A Retrospective Study. PLoS medicine, 2016. 13(12): p. e1002198-e1002198.
    32. Sholl, L.M., et al., Liquid Biopsy in Lung Cancer: A Perspective From Members of the Pulmonary Pathology Society. Arch Pathol Lab Med, 2016. 140(8): p. 825-9.
    33. Nikolaev, S., et al., Circulating tumoral DNA: Preanalytical validation and quality control in a diagnostic laboratory. Analytical Biochemistry, 2018. 542: p. 34-39.
    34. Yu, M., et al., Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science, 2014. 345(6193): p. 216-20.
    35. Sharma, S., et al., Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnology Advances, 2018. 36(4): p. 1063-1078.
    36. van Niel, G., G. D'Angelo, and G. Raposo, Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 2018. 19(4): p. 213-228.
    37. Tickner, J.A., et al., Functions and Therapeutic Roles of Exosomes in Cancer. Frontiers in Oncology, 2014. 4.
    38. Minciacchi, V.R., M.R. Freeman, and D. Di Vizio, Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Seminars in Cell & Developmental Biology, 2015. 40: p. 41-51.
    39. Garcia-Romero, N., et al., Extracellular vesicles compartment in liquid biopsies: Clinical application. Molecular Aspects of Medicine, 2018. 60: p. 27-37.
    40. Wu, J., et al., Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics, 2020. 10(10): p. 4544-4556.
    41. Sholl, L.M., et al., Liquid Biopsy in Lung Cancer: A Perspective From Members of the Pulmonary Pathology Society. Archives of Pathology & Laboratory Medicine, 2016. 140(8): p. 825-829.
    42. Ilié, M. and P. Hofman, Pros: Can tissue biopsy be replaced by liquid biopsy? Transl Lung Cancer Res, 2016. 5(4): p. 420-3.
    43. Tabassum, D.P. and K. Polyak, Tumorigenesis: it takes a village. Nature Reviews Cancer, 2015. 15(8): p. 473-483.
    44. Ashworth, T., A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J., 1869. 14: p. 146.
    45. Harouaka, R.A., M. Nisic, and S.-Y. Zheng, Circulating Tumor Cell Enrichment Based on Physical Properties. Journal of Laboratory Automation, 2013. 18(6): p. 455-468.
    46. Seal, S.H., A sieve for the isolation of cancer cells and other large cells from the blood. Cancer, 1964. 17(5): p. 637-642.
    47. Apel, P., Track etching technique in membrane technology. Radiation Measurements, 2001. 34(1): p. 559-566.
    48. Bankó, P., et al., Technologies for circulating tumor cell separation from whole blood. Journal of Hematology & Oncology, 2019. 12(1): p. 48.
    49. Xu, X., et al., Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis. ELECTROPHORESIS, 2020. 41(10-11): p. 933-951.
    50. Di Carlo, D., Inertial microfluidics. Lab on a Chip, 2009. 9(21): p. 3038-3046.
    51. Seal, S.H., Silicone flotation: A simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer, 1959. 12(3): p. 590-595.
    52. Ferreira, M.M., V.C. Ramani, and S.S. Jeffrey, Circulating tumor cell technologies. Molecular Oncology, 2016. 10(3): p. 374-394.
    53. Becker, F.F., et al., Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A, 1995. 92(3): p. 860-4.
    54. Mehrishi, J.N. and J. Bauer, Electrophoresis of cells and the biological relevance of surface charge. ELECTROPHORESIS, 2002. 23(13): p. 1984-1994.
    55. Gascoyne, P.R.C. and S. Shim, Isolation of Circulating Tumor Cells by Dielectrophoresis. Cancers, 2014. 6(1): p. 545-579.
    56. Jiang, W., et al., Natural Fish Trap-Like Nanocage for Label-Free Capture of Circulating Tumor Cells. Advanced Science, 2020. 7(22): p. 2002259.
    57. Chen, W., et al., Nanoroughened Surfaces for Efficient Capture of Circulating Tumor Cells without Using Capture Antibodies. ACS Nano, 2013. 7(1): p. 566-575.
    58. Nguyen, A.T., S.R. Sathe, and E.K. Yim, From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. Journal of Physics: Condensed Matter, 2016. 28(18): p. 183001.
    59. Baccelli, I., et al., Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol, 2013. 31(6): p. 539-44.
    60. Lara, O., et al., Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Experimental Hematology, 2004. 32(10): p. 891-904.
    61. Ferreira, M.M., V.C. Ramani, and S.S. Jeffrey, Circulating tumor cell technologies. Mol Oncol, 2016. 10(3): p. 374-94.
    62. Hynes, R.O., Integrins: Bidirectional, Allosteric Signaling Machines. Cell, 2002. 110(6): p. 673-687.
    63. Weigelt, B., J.L. Peterse, and L.J. van 't Veer, Breast cancer metastasis: markers and models. Nat Rev Cancer, 2005. 5(8): p. 591-602.
    64. Danhier, F., A. Le Breton, and V. Préat, RGD-Based Strategies To Target Alpha(v) Beta(3) Integrin in Cancer Therapy and Diagnosis. Molecular Pharmaceutics, 2012. 9(11): p. 2961-2973.
    65. Kue, C.S., et al., Small Molecules for Active Targeting in Cancer. Medicinal Research Reviews, 2016. 36(3): p. 494-575.
    66. Liu, S., Radiolabeled Multimeric Cyclic RGD Peptides as Integrin αvβ3 Targeted Radiotracers for Tumor Imaging. Molecular Pharmaceutics, 2006. 3(5): p. 472-487.
    67. Gottschalk, K.-E. and H. Kessler, The Structures of Integrins and Integrin–Ligand Complexes: Implications for Drug Design and Signal Transduction. Angewandte Chemie International Edition, 2002. 41(20): p. 3767-3774.
    68. Haubner, R., et al., Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists. Journal of the American Chemical Society, 1996. 118(32): p. 7461-7472.
    69. Magdeldin, S., Affinity chromatography. 2012: BoD–Books on Demand.
    70. Kantlehner, M., et al., Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem, 2000. 1(2): p. 107-14.
    71. Pallarola, D., et al., Interface Immobilization Chemistry of cRGD-based Peptides Regulates Integrin Mediated Cell Adhesion. Adv Funct Mater, 2014. 24(7): p. 943-956.
    72. Dahmen, C., et al., Improving Implant Materials by Coating with Nonpeptidic, Highly Specific Integrin Ligands. Angewandte Chemie International Edition, 2004. 43(48): p. 6649-6652.
    73. Dalsin, J.L., et al., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG− DOPA. Langmuir, 2005. 21(2): p. 640-646.
    74. Gombotz, W.R., et al., Protein adsorption to poly (ethylene oxide) surfaces. Journal of biomedical materials research, 1991. 25(12): p. 1547-1562.
    75. Park, K.D., et al., Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials, 1998. 19(7-9): p. 851-859.
    76. Yao, W., Y. Li, and X. Huang, Fluorinated poly(meth)acrylate: Synthesis and properties. Polymer, 2014. 55(24): p. 6197-6211.
    77. Uneyama, K., Functionalized fluoroalkyl and alkenyl silanes: Preparations, reactions, and synthetic applications. Journal of Fluorine Chemistry, 2008. 129(7): p. 550-576.
    78. Hedayati, M., et al., Protein adsorption measurements on low fouling and ultralow fouling surfaces: A critical comparison of surface characterization techniques. Acta Biomaterialia, 2020. 102: p. 169-180.
    79. Dadfar, S.M.M., et al., Site-Specific Surface Functionalization via Microchannel Cantilever Spotting (µCS): Comparison between Azide–Alkyne and Thiol–Alkyne Click Chemistry Reactions. Small, 2018. 14(21): p. 1800131.
    80. Hua, J., et al., Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. Materials Science and Engineering: C, 2016. 61: p. 879-892.
    81. Wu, Y., et al., A novel ratiometric fluorescent immunoassay for human α-fetoprotein based on carbon nanodot-doped silica nanoparticles and FITC. Analytical Methods, 2016. 8(27): p. 5398-5406.
    82. Lai, Y., et al., Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications. Small, 2013. 9(17): p. 2945-2953.
    83. Majoul, N., S. Aouida, and B. Bessaïs, Progress of porous silicon APTES-functionalization by FTIR investigations. Applied Surface Science, 2015. 331: p. 388-391.
    84. Wang, R., G. Xu, and Y. He, Structure and properties of polytetrafluoroethylene (PTFE) fibers. e-Polymers, 2017. 17(3): p. 215-220.
    85. Ren, Y., et al., Spectroscopic characterization of polymer adsorption at the air-solution interface. Macromolecules, 1995. 28(1): p. 358-364.
    86. Oshima, A., et al., Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene. Radiation Physics and Chemistry, 2001. 62(1): p. 39-45.
    87. Chiang, C.-H., H. Ishida, and J.L. Koenig, The structure of γ-aminopropyltriethoxysilane on glass surfaces. Journal of Colloid and Interface Science, 1980. 74(2): p. 396-404.
    88. Zabihi, O., et al., Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling. New Journal of Chemistry, 2015. 39(3): p. 2269-2278.
    89. Peters Jr, T., All about albumin: biochemistry, genetics, and medical applications. 1995: Academic press.
    90. Meyers, S.R. and M.W. Grinstaff, Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chemical reviews, 2012. 112(3): p. 1615-1632.
    91. Barbier, O., L. Arreola-Mendoza, and L.M. Del Razo, Molecular mechanisms of fluoride toxicity. Chemico-biological interactions, 2010. 188(2): p. 319-333.
    92. Dong, B., et al., Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polymer Bulletin, 2011. 66(4): p. 517-528.
    93. Lodge, T. and M. Muthukumar, Physical chemistry of polymers: entropy, interactions, and dynamics. The Journal of Physical Chemistry, 1996. 100(31): p. 13275-13292.
    94. Brittain, W.J. and S. Minko, A structural definition of polymer brushes. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(16): p. 3505-3512.
    95. Singh, N., et al., The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion. Biomaterials, 2007. 28(5): p. 763-771.
    96. MacCallum, N., et al., Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomaterials Science & Engineering, 2015. 1(1): p. 43-51.
    97. Chen, J., et al., An immobilized liquid interface prevents device associated bacterial infection in vivo. Biomaterials, 2017. 113: p. 80-92.
    98. Wang, Z., et al., Highly Polymer-Repellent yet Atomically Flat Surfaces Based on Organic Monolayers with a Single Fluorine Atom. Advanced Materials Interfaces, 2016. 3(4): p. 1500514.
    99. Privett, B.J., et al., Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces. Langmuir, 2011. 27(15): p. 9597-9601.
    100. Arkles, B., Hydrophobicity, hydrophilicity and silane surface modification. Gelest Inc, 2011. 215: p. 547-1015.
    101. Xie, Y., et al., Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2010. 41(7): p. 806-819.
    102. Celina, M. and G. George, Characterisation and degradation studies of peroxide and silane crosslinked polyethylene. Polymer Degradation and Stability, 1995. 48(2): p. 297-312.
    103. Koc, Y., et al., Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab on a Chip, 2008. 8(4): p. 582-586.
    104. Wang, J., et al., Multicolor cocktail for breast cancer multiplex phenotype targeting and diagnosis using bioorthogonal surface-enhanced raman scattering nanoprobes. Analytical chemistry, 2019. 91(17): p. 11045-11054.

    無法下載圖示 校內:2027-08-24公開
    校外:2027-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE