| 研究生: |
簡佩珊 Chien, Pei-Shan |
|---|---|
| 論文名稱: |
釩對人類肺腫瘤細胞株A549細胞中MAP Kinase及環氧合酵素影響之研究 Study of the Effects of Vanadate on MAP Kinase and Cyclooxygenase in Human Lung Carcinoma Cell Line A549 |
| 指導教授: |
麥愛堂
Oi-tong Mak |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 環氧合酵素 、釩 |
| 外文關鍵詞: | vanadate, MAP Kinase, cyclooxygenase |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前列腺素是存在人類各組織中的一種內泌素,是平衡生理環境的一個重要物質,對人體健康、疾病預防有著不可忽視的作用。它可藉由環氧合酵素(cyclooxygenase, COX)所參與的路徑在體內被合成出來。目前人體內主要有兩種cyclooxygenase被發現,分別是cyclooxygenase-1 (COX-1)及cyclooxygenase-2 (COX-2)。COX-1是一種持續性表現酵素,一般穩定的存在體內,而COX-2則是一種可誘導酵素,在受到過敏反應或細胞分裂刺激時其基因會被大量表現。
釩是人類在日常生活中所遭受的空氣污染源之一,其對人體的生長發育及中樞神經系統會造成嚴重傷害。根據前人研究,釩會誘導MAP kinase的訊息傳遞路徑及COX-2的表現,並導致細胞生理之改變。然而,釩對COX-2影響的機制尚不清楚。因此,本篇研究將探討釩所誘導人類肺腫瘤細胞株A549 COX-2表現的訊息傳遞路徑。
研究結果顯示,釩在A549細胞中會活化ERK,JNK及p38 MAPK並誘導COX-2的表現。當分別以3個MAPK的抑制劑對細胞進行前處理時,我們發現只有p38抑制劑(SB203580)會抑制釩所誘導的COX-2表現,顯示釩所誘導的MAPK中只有p38參與COX-2表現。此外,利用可偵測磷酸化的MKK3/6及ATF-2抗體,我們發現釩可誘導p38上游MKK3/6及下游ATF-2轉錄因子的磷酸化,顯示p38 MAPK訊息傳遞途徑確實參與COX-2表現。進一步以上皮生長因子受器(EGFR)之抑制劑進行前處理,結果顯示釩所誘導的COX-2表現會受到抑制。根據以上的實驗結果,我們推論釩會透過上皮生長因子受器進而活化MKK3/6,p38及ATF-2,最後導致COX-2的表現。
Prostaglandins (PGs) were first discovered and isolated from human semen in the 1930s and were believed to be part of the prostatic secretions. PGs are produced by cyclooxygenases (COX-1 and COX-2). COX-1 is a constitutively expressed housekeeping gene whilst COX-2 is an acute phase gene that is rapidly induced by inflammatory and mitogenic stimuli.
Vanadate is a transition metal widely distributed in the environment. It has been reported that vanadate associated with airborne particulate matters can modify DNA synthesis, cause cell growth arrest and induce apoptosis. Moreover, vanadium exposure was also found to cause increase synthesis of inflammatory cytokines, such as interleukin-1 (IL-1), tumor necrosis factor- alpha (TNF-α), and prostaglandin E2 (PGE2). In this study, we found that exposure of A549 human lung carcinoma cells to vanadate led to extracellular signal-regulated kinase (ERK1/2), c-Jun NH2-terminal protein kinases (JNKs), p38 mitogen-activated protein kinase (p38) activation and COX-2 protein expression in a dose-dependent manner. SB203580, a p38 MAPK inhibitor, but not PD098059 and SP600125, specific inhibitor of MKK1 and selective inhibitor of JNK respectively, suppressed COX-2 expression. In addition, western blotting revealed that exposure of A549 cells to vanadate resulted in the phosphorylation of the upstream regulator of p38 MAP kinase MKK3/6, p38 MAP kinase itself, and its downstream effector, ATF-2, over a similar time course. Furthermore, the epithelial growth factor (EGF) receptor specific inhibitor (PD153035) abrogated vanadate-induced COX-2 expression. However, COX-2 expression was not affected by a scavenger of vanadate-induced reactive oxygen species, catalase, or DPI, an NADPH oxidase inhibitor. Together, we suggest that EGF receptor, MKK3/6, p38 MAPK and ATF-2 signaling pathways may be involved in vanadate induced COX-2 protein expression in the A549 human lung carcinoma cell.
Balch C.M., Doghert P.A., Cloud G.A. and Tilden A.B., Prostaglandin E2-mediated suppression of cellular immunity in colon cancer patient, Surgery 95 (1984) 71-77.
Blanchard D.A., Mouhamad S., Auffredou M.T., Pesty A., Bertoglio J., Leca G. and Vazquez A., Cdk2 associates with MAP Kinase in vivo and its nuclear translocation is dependent on MAP Kinase activation in IL-2-dependent Kit 225 T lymphocytes, Oncogene 19 (2000) 4184–4189.
Carpenter G., Vanadate, epidermal growth factor, and the stimulation of DNA synthesis, Biochem. Biophys. Res. Commun. 102 (1981) 1115-1121.
Carter J.D., Ghio A.J., Sainet J.M. and Devlin R.B., Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent, Toxicol. Appl. Pharmacol. 146 (1997) 180-188.
Chen G., Kamel M., Hanon R. and Warner T.W., Regulation of cyclo-oxygenase gene expression in rat smooth muscle cells by catalase, Biochem. Pharmacol. 55 (1998) 1621-1631.
Chen Y.C., Shen S.C and Tsai S.H., Prostaglandin D(2) and J(2) induce apoptosis in human leukemia cells activation of the caspase 3 cascade and production of reactive oxygen species, Biochim. Biophys. Acta. 1743 (2005) 291-304.
Choudhary S., Wadhwa S., Raisz L.G., Alander C. and Pilbeam C.C., Extracellular calcium is a potent inducer of cyclo-oxygenase-2 in murine osteoblasts through an ERK signaling pathway, J. Bone Miner. Res. 18 (2003) 1813–1824.
Chuang S.M. and Yang J.L., Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells, Mol Cell Biochem. 222 (2001) 85–95.
Chuang S.M., Wang I.C., Hwua Y.S., Yang J.L., Short-term depletion of catalase suppresses cadmium-elicited c-Jun N-terminal kinase activation and apoptosis: role of protein phosphatases, Carcinogenesis 24 (2003) 7-15.
Courtois E., Marques M., Barrientos A., Casado S. and Lópezfarré A., Lead-induced downregulation of soluble guanylate cyclase in isolated rat aorticsegments mediated by reactive oxygen species and cyclooxygenase-2, J. Am. Soc. Nephrol. 14 (2003) 1464-1470.
Crans D.C., Simone C.M., Saha A.K. and Glew R.H., Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase, Biochem. Biophys. Res. Commun. 165 (1989) 246-250.
Derijard B., Ringed J., Barrett T., Wu I.H., Han J., Ulevitch J. and Davis R.J., Independent human MAP kinase signal transduction pathways defined by MEK and
MKK isoforms, Science 267 (1995) 682-685.
Ding M., Li J.J., Leonard S.S., Ye J-P., Shi X., Colburn1 N.H., Castranova V. and Vallyathan V., Vanadate-induced activation of activator protein-1: role of reactive
oxygen species, Carcinogenesis 20 (1999) 663–668.
Ding M., Shi X., Dong Z., Chen F., Lu Y., Castranova V. and Vallyathan V., Freshly fractured crystalline silica induces activator protein-1 activation through ERKs and p38 MAPK, J. Biol. Chem. 274 (1999) 30611–30616.
Du S., McLaughlin B., Pal S. and Aizenman E., In Vitro Neurotoxicity of Methylisothiazolinone, a Commonly Used Industrial and Household Biocide, Proceeds via a Zinc and Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase-Dependent Pathway, J Neurosci. 22 (2002) 7408-7416.
Figueiredo-Pereira M.E., Li Z., Jansen M. and Rockwell P., N-acetylcysteine and celecoxib lessen cadmium cytotoxicity which is associated with cyclooxygenase-2 up-regulation in mouse neuronal cells, J. Biol. Chem. 277 (2002) 25283-25289.
Fujimoto Y., Uno E. and Sakuma S., Effects of reactive oxygen and nitrogen species on cyclooxygenase-1 and -2 activities, Prostaglandins, Leukotrienes and Essential Fatty Acids 71 (2004) 335-340.
Gao N., Ding M., Zheng J. Z., Zhang Z., Leonard S.S., Liu K.J., Shi X. and Jiang B.H., Vanadate-induced expression of hypoxia-inducible factor 1α and vascular endothelial growth factor through phosphatidylinositol 3-Kinase/Akt pathway and reactive oxygen species, J. Biol. Chem. 277 (2002) 31963–31971.
Garrington T.P. and Johnson G.L., Organization and regulation of mitogen activated
protein kinase signaling pathways, Curr. Opin. Cell Biol. 11 (1999) 211-218.
Hsieh C.C. and Papaconstantinou J., The effect of aging on p38 signaling pathway activity in the mouse liver and in response to ROS generated by 3-nitropropionic acid,
Mech. Ageing Dev. 123 (2002) 1423-1435.
Huang C., Zhang Z., Ding M., Li J., Ye J., Leonard S.S., Shen H-M., Butterworth L., Lu Y., Costa M., Rojanasakul Y., Castranova V., Vallyathan V. and Shi X., Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis, J. Biol. Chem. 275 (2000) 32516-32522.
Huang C., Ding M., Li J., Leonard S.S., Rojanasakul Y., Castranova V., Vallyathan V., Ju G. and Shi X., Vanadium-induced nuclear factor of activated T-cells activation through hydrogen peroxide, J. Biol. Chem. 276 (2001) 22397–22403.
Huang M., Stolina M., Sharma S., Mao J.T., Zhu L., Miller P.W., Wollman J., Herschman H. and Dubinett S.M., Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: Up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res. 58 (1998) 1208-1216.
Iryo Y., Matsuoka M., Wispriyono B., Sugiura T. and Igisu H., Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells, Biochem. Pharmacol. 60 (2000) 1875-1882.
Kim H., Rhee S.H., Kokkotou E., Na X., Savidge T., Moyer M.P., Pothoulakis C. and Lamont J.T., Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK, J. Biol. Chem. 280 (2005) 21237-21245.
Kirschenbaum A., Klausner A.P., Lee R., Unger P., Yao S., Liu X.H. and Levine A.C., Expression of ciclooxygenase-1 and ciclooxygenase-2 in the human prostate, Urology 56 (2000) 671-676.
Kocher M. and Clemetson K.J., Staurosporine both activates and inhibits serine/threonine kinases in human platelets, Biochem. J. 275, (1991) 301-306.
Lala P.K., Elkashab M., Kerbel R.S. and Parhar R.S., Cure of human melanoma lung metastases in nude mice with chronic indomethacin therapy combined with multiple rounds of IL-2: characteristic of killer cells generated in situ. Int. J. Immunol. 2 (1990) 1149-1158.
Lee J.E., Kim K.M., Cho J.W., Suh S.I., Suh M.H., Kwon T.K., Park J.W., Bae J.H., Song D.K., Cho C.H., Bae I. and Baek W.K., Pyrrolidine dithiocarbamate induces cyclooxygenase-2 expression in NIH 3T3 fibroblast cells, Biochem. Biophys. Res. Commun. 298 (2002) 230–234.
Leonard A. and Gerber G.B., Mutagenicity, carcinogenicity, and teratogenicity of vanadium compounds, Mutat. Res. 317 (1994) 81-88.
Lin A., Minden G., Martinetto H., Claret F.X., Lange-Carter C., Mercurio F., Johnson G.L. and Karin M., Identification of a dual specificity kinase that activates the
Jun kinases and p38-Mpk2, Science 268 (1995) 286-290.
Loll P.J., Picot D., Ekabo O. and Garavito R.M., Synthesis and use of iodinated antiinflammatory drug analogs as crystallographic probes of the prostaglandin H2 synthase cyclooxygenase active site, Biochemistry 35 (1996) 7330-7340.
Luo J., Sun Y., Lin H., Qian Y., Li Z., Leonard S.S., Huang C. and Shi X., Activation of JNK by vanadate induces a Fas-associated death domain (FADD)-dependent death of cerebellar granule progenitors in Vitro, J. Biol. Chem. 278 (2003) 4542–4551.
Marshall C.J., Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation, Cell 80 (1995) 179–185.
Mehis P., Kostyantyn K., Anu P., Mariam D., Nathalie H.V., Genny T.M., Karen L.R., Sherven S. and Steven M.D., Cyclooxygenase-2 modulates the insulin-like growth fator axis in Non-Small-Cell lung cancer, Cancer Res. 64 (2004) 6549-6555.
Merten W.C., Bramwell V.H., Banerjee D., Gwadry-Sridhar F. and Lala P.K., Sustained indomethacin and ranitidine with intermittent continuous infusion interleukin-2 in advanced malignant melanoma: a phase II study, Clin. Oncol. 5 (1993) 107-113.
Mitchell J.A., Larkin S. and Williams T.J., Cycloox-ygenase-2: regulation and relevance in inflammation, Biochem. Pharmacol. 50 (1995) 1535-1542.
Nakamura T. and Sakamoto K., Reactive oxygen species up-regulates cyclooxygenase-2, p53 and Bax mRNA expression in bovine luteral cells, Biochem. Biophys. Res. Commun. 284 (2001) 203–210.
Nechay B.R., Nanninga L.B. and Nechay P.S., Vanadyl (IV) and vanadate (V) binding to selected endogenous phosphate, carboxyl, and amino ligands: calculations of cellular vanadium species distribution, Arch. Biochem. Biophys. 251 (1986) 128-138.
Niiro H., Otsuka T., Ogami E., Yamaoka K., Nagano S., Akahoshi M., Nakashima H., Arinobu Y., Izuhara K. and Niho Y., MAP kinase pathways as a route for regulatory mechanisms of IL-10 and IL-4 which inhibit COX-2 expression in human monocytes, Biochem. Biophys. Res. Commun. 250 (1998) 200–205.
Nriagu J.O. and Pacyna J.M., Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature 333 (1988) 134-139.
O’Neill G.P. and Ford-Hutchinson A.W., Expression of mRNA for ciclooxygenase-1 and ciclooxygenase-2 in human tissues, FEBS Lett. 330 (1993) 156-160.
Oshima M., Dinchuk J.E., Kargman S.L., Oshima H., Hancock B., Kwong E., Trzaskos J.M., Evans J.F. and Taketo M.M., Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2), Cell 87 (1996) 803-809.
Park S.W., Sung M.W., Heo D.S., Inoue H., Shim S.H. and Kim K.H., Nitric oxide upregulates the cyclooxygenase-2 expression through the cAMP-response element in its promoter in several cancer cell lines, Oncogene 24 (2005) 6689-6698.
Peng T., Lu X. and Feng Q., NADH oxidase signaling induces cyclooxygenase-2 expression during lipopolysaccharide stimulation in cardiomyocytes, FASEB J. 19 (2005) 293-295.
Picot D., Loll P.J. and Garavito R.M., The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1, Nature 367 (1992) 243-249.
Prescott S.M. and Fitzpatrick F.A., Cyclooxygenase-2 and carcinogenesis, Biochim. Biophys. Acta 1470 (2000) M69–M78.
Ramasarma T. and Crane F.L., Does vanadium play a role in cellular regulation? Curr. Topic Cell Regul. 20 (1981) 247-301.
Rockwell P., Martinez J., Papa L. and Gomes E., Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium, Cell Signal. 16 (2004) 343–353.
Romare A. and Lundholm C.E., Cadmium-induced calcium release and prostaglandin E2 production in neonatal mouse calvaria are dependent on cox-2 induction and protein kinase C activation, Arch Toxicol. 73 (1999) 223-228.
Sabbioni E., Pozzi G., Pintar A., Casella L. and Garattini S., Cellular retention, cytotoxicity and morphological transformation by vanadium(IV) and vanadium(V) in BALB/3T3 cell lines, Carcinogenesis 12 (1991) 47-52.
Samet J.M., Stonehuerner J., Reed W., Devlin R.B., Dailey L.A., Kennedy T.P., Bromberg P.A. and Ghio A.J., Disruption of protein tyrosine phosphate homeostasis in bronchial epithelial cells exposed to oil fly ash, Am. J. Physiol. Lung Cell Mol. Physiol. 272 (1997) 426-432.
Samet J.M., Graves L.M., Quay J., Dailey L.A., Devlin R.B., Ghio A.J., Wu W.,. Bromberg P.A and Reed W., Activation of MAPK in human bronchial epithelial cells exposed to metals, Am. J. Physiol. Lung Cell Mol. Physiol. 275 (1998) L551-L558.
Samet J.M., Dewar B.J., Wu W. and Graves L.M., Mechanisms of Zn2+-induced signal initiation through the epidermal growth factor receptor, Toxicol. Appl. Pharmacol. 191 (2003) 86-93.
Schroer K., Zhu Y., Saunders M.A., Deng W.G., Xu X.M., Meyer-Kirchrath J. and Wu K.K., Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators, Circulation 105 (2002) 2760-2765.
Seo S.R., Chong S.A., Lee S.I., Sung J.Y., Ahn Y.S., Chung K.C. and Seo J.T., Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells, J. Neurochem. 78 (2001) 600-610.
Shi X. and Dalal N.S., Glutathione reductase functions as vanadate (V) reductase, Arch. Biochem. Biophys. 278 (1990) 288-290.
Shi X. and Dalal N.S., Flavoenzymes reduce vanadium (V) and molecular oxygen and generate hydroxyl radical, Arch. Biochem. Biophys. 289 (1991) 355-361.
Smith W.L., DeWitt D.L. and Garavito R.M., Cyclooxygenases: structural, cellular and molecular biology, Annu. Rev. Biochem. 69 (2000) 145–182.
Stern A., Yin X., Tsang S.S., Davison A. and Moon J., Vanadium as a modulator of cellular regulatory cascades and oncogene expression, Biochem. Cell Biol. 71 (1993) 103-112.
Vignola1 A.M. and Bellia V., Transcriptional regulation of COX-2: a key mechanism in the pathogenesis of nasal polyposis in aspirin-sensitive asthmatics? Allergy 58 (2003) 95-97.
Vllyathan V. and Shi X., The role of oxygen free radicals in occupational and environmental lung diseases, Environ Health Perspect. 105 (1997) 165-177.
Warner T.D. and Mitchell J.A., Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic, FASEB J. 18 (2004) 790-804.
Williams C.S., Smalley W. and DuBois R.N., Aspirin use and potential mechanisms for colorectal cancer prevention, J. Clin. Invest. 100 (1997) 1325-1329.
Wu W., Graves L.M., Jaspers I., Devlin R.B., Reed W. and Samet J.M., Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metal, Am. J. Physiol. Lung Cell Mol. Physiol. 277 (1999) L924-L931.
Wu W., Samet J.M., Ghio A.J. and Devlin R.B., Activation of the EGF receptor signaling pathway in airway epithelial cells exposed to Utah Valley PM, Am. J. Physiol. Lung Cell Mol. Physiol. 281 (2001) L483-L489.
Wu W., Samet J.M., Silbajoris R., Dailey L.A., Sheppard D., Bromberg P.A. and Graves L.M., Heparin-binding epidermal growth factor cleavage mediates zinc-induced epidermal growth receptor phosphorylation, Am. J. Physiol. Lung Cell Mol. Physiol. 30 (2003) 540-547.
Yamamori T., Inanami O., Sumimoto H., Akasaki T., Nagahata H. and Kuwabara M., Relationship between p38 mitogen-activated protein kinase and small GTPase Rac for the activation of NADPH oxidase in bovine neutrophils, Biochem. Biophys. Res. Commun. 293 (2002) 1571-1578.
Ye J., Ding M., Leonard S.S., Robinson V.A., Michecchia L., Zhang X., Castranova V., Vallyathan V. and Shi X., Vanadate induces apoptosis in epidermal JB6 P+ cells via hydrogen peroxide-mediated reactions, Mol. Cell. Biochem. 202 (1999) 9-17.
Yeh C.M., Huang W.C. and Huang H.J., Copper treatment activates mitogen-activated protein kinase signalling in rice, Physiol. Plant. 119 (2003) 392-399.
Yeh C.M., Hsiao L.J. and Huang H.J., Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice, Plant Cell Physiol. 45 (2004) 1306-1312.
Zhang Z., Huang C., Li J., Leonard S.S., Lanciotti R., Butterworth L. and Shi X., Vanadate-induced cell growth regulation and the role of reactive oxygen species, Arch. Biochem. Biophys. 392 (2001) 311-320.
Zhang Z., Leonard S.S., Huang C., Vallyathan V., Castranova V., and Shi X., Role of reactive oxygen species and MAPKs in vanadate-induced G2/M phase arrest, Free Radic Biol Med. 34 (2003) 1333-1342.
Zhong B.Z., Gu Z.W., Wallace W.E., Whong W.Z. and Ong T., Genotoxicity of vanadium pentoxide in Chinese hamster V79 cells, Mutat. Res. 321 (1994) 35-42.