簡易檢索 / 詳目顯示

研究生: 張子軒
Chang, Tzu-Hsuan
論文名稱: 鐵電性對石墨烯能帶結構之調控
Ferroelectric Control of Graphene Band Structure
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 59
中文關鍵詞: 石墨烯鐵酸鉍摻雜能級拉曼光譜學光電子能譜學
外文關鍵詞: Graphene, BiFeO3, Doping Level, Raman Spectrum, PES
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要研究內容為探究鐵電性薄膜對吸附於其表面上的石墨烯樣品能帶結構之調控。我們透過剝離石墨法使樣品吸附於鐵酸鉍薄膜表面上,並利用掃描式電子顯微鏡進行低層數石墨烯的找尋與定位,再進行拉曼光譜的測量與分析來確定各低層數石墨烯樣品之厚度,並從中挑選單層與雙層石墨烯樣品進行鐵電性基板對其影響之分析。透過掃描探針顯微術的應用,使我們可以直接利用外加偏壓於原子力顯微鏡之探針上,來對石墨烯樣品所覆蓋的鐵酸鉍基板進行自發極化方向之切換,並從光電子能譜學與拉曼光譜學的分析中得知,石墨烯的主要載子在經過外加偏壓的操作後將從電洞轉變為電子,並且其費米能級移動了0.2eV。

    We demonstrate a ferroelectric manipulation of graphene doping level in the graphene-BiFeO3 (BFO) hybrid system. Here, the graphene sheets were prepared by mechanical exfoliation of small mesas of highly oriented pyrolytic graphite (HOPG) and transferred on the BFO substrate. After locating monolayer-graphene sheets through scanning electron microscope (SEM) and Raman spectroscopy, a spatially localized DC bias was applied on the graphene-BFO hybrid system using scanning probe microscope (AFM) to flip the polarization of BFO from as-grown downward state to upward one. Using spatial resolved Raman spectroscopy and photoelectron spectroscopy (PES), the p-type doping of graphene can be characterized on the downward polarized BFO substrate. A ferroelectric switching to n-type doping of graphene is demonstrated on the upward BFO substrate and with an energy shift of about 0.2 eV higher than Dirac point.

    第一章 緒論 1 1.1 序言 1 1.2 石墨烯材料簡介 2 1.2.1能帶結構 2 1.2.2製造方式 4 1.3 鐵酸鉍材料簡介 7 1.3.1特性與結構 7 1.3.2自發極化方向切換 8 第二章 實驗儀器原理與機制 10 2.1 掃描式電子顯微鏡簡介 10 2.2 原子力顯微鏡簡介 12 2.3 壓電力顯微鏡簡介 14 2.4 拉曼光譜學簡介 16 2.5 光電子能譜學簡介 18 第三章 實驗過程 21 3.1 單層石墨烯樣品的製備 21 3.1.1撕裂石墨法的樣品製作 21 3.1.2石墨烯樣品定位 22 3.1.3石墨烯樣品厚度確認 23 3.2 鐵酸鉍基板的初始狀態與外加偏壓參數調整 25 3.2.1鐵酸鉍基板之自發極化方向與翻轉參數測定 25 3.2.2於石墨烯樣品上外加偏壓之參數調整 26 第四章 數據分析與討論 29 4.1 外加偏壓翻轉鐵酸鉍下的石墨烯結構變化 29 4.1.1 拉曼光譜分析外加偏壓後的石墨烯結構變化 29 4.1.2 光電子能譜分析外加偏壓後的石墨烯結構變化 33 4.2 於石墨烯上外加偏壓對覆蓋之鐵酸鉍基板影響 35 4.3石墨烯上週期電場的創建 42 4.4 外加偏壓翻轉鐵酸鉍下的石墨烯費米能級變化 47 第五章 結論 54 參考文獻 55

    [01] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films."Science 306.5696 (2004): 666-669.
    [02] Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." Nature materials 6.3 (2007): 183-191.
    [03] Sprinkle, Mike, et al. "First direct observation of a nearly ideal graphene band structure." Physical review letters 103.22 (2009): 226803.
    [04] Novoselov, K. S. A., et al. "Two-dimensional gas of massless Dirac fermions in graphene." nature 438.7065 (2005): 197-200.
    [05] Zhang, Y., et al. "Landau-level splitting in graphene in high magnetic fields."Physical review letters 96.13 (2006): 136806.
    [06] Guinea, F., AH Castro Neto, and N. M. R. Peres. "Electronic states and Landau levels in graphene stacks." Physical Review B 73.24 (2006): 245426.
    [07] Zhang, Yuanbo, et al. "Experimental observation of the quantum Hall effect and Berry's phase in graphene." Nature 438.7065 (2005): 201-204.
    [08] Zhou, S. Y., et al. "Substrate-induced bandgap opening in epitaxial graphene."Nature materials 6.10 (2007): 770-775.
    [09] Mañes, Juan L., Francisco Guinea, and María AH Vozmediano. "Existence and topological stability of Fermi points in multilayered graphene." Physical Review B 75.15 (2007): 155424.
    [10] Nakada, Kyoko, et al. "Edge state in graphene ribbons: Nanometer size effect and edge shape dependence." Physical Review B 54.24 (1996): 17954.
    [11] Ohta, Taisuke, et al. "Controlling the electronic structure of bilayer graphene."Science 313.5789 (2006): 951-954.
    [12] Castro, Eduardo V., et al. "Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect." Physical review letters 99.21 (2007): 216802.
    [13] Das, Anindya, et al. "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor." Nature nanotechnology 3.4 (2008): 210-215.
    [14] Meric, Inanc, et al. "Current saturation in zero-bandgap, top-gated graphene field-effect transistors." Nature nanotechnology 3.11 (2008): 654-659.
    [15] Oostinga, Jeroen B., et al. "Gate-induced insulating state in bilayer graphene devices." Nature materials 7.2 (2007): 151-157.
    [16] Williams, J. R., L. DiCarlo, and C. M. Marcus. "Quantum Hall effect in a gate-controlled pn junction of graphene." Science 317.5838 (2007): 638-641.
    [17] Giovannetti, G., et al. "Doping graphene with metal contacts." Physical Review Letters 101.2 (2008): 026803.
    [18] 樊曉峰、郭哲來"單層石墨烯的計算物理研究之介紹"物理雙月刊33卷2期 p214-235
    [19] Neto, AH Castro, et al. "The electronic properties of graphene." Reviews of modern physics 81.1 (2009): 109.
    [20] Wallace, P. R. "The band theory of graphite." Physical Review 71.9 (1947): 622.
    [21] 林永昌、呂俊頡、鄭碩方、邱博文"石墨烯之電子能帶特性與其元件應用"物理雙月刊33卷2期 p191-202
    [22] Hummers Jr, William S., and Richard E. Offeman. "Preparation of graphitic oxide." Journal of the American Chemical Society 80.6 (1958): 1339-1339.
    [23] Eda, Goki, Giovanni Fanchini, and Manish Chhowalla. "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material." Nature nanotechnology 3.5 (2008): 270-274.
    [24] Dikin, Dmitriy A., et al. "Preparation and characterization of graphene oxide paper." Nature 448.7152 (2007): 457-460.
    [25] Gilje, Scott, et al. "A chemical route to graphene for device applications." Nano letters 7.11 (2007): 3394-3398.
    [26] Park, Sungjin, and Rodney S. Ruoff. "Chemical methods for the production of graphenes." Nature nanotechnology 4.4 (2009): 217-224.
    [27] Berger, Claire, et al. "Electronic confinement and coherence in patterned epitaxial graphene." Science 312.5777 (2006): 1191-1196.
    [28] Emtsev, Konstantin V., et al. "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide." Nature materials 8.3 (2009): 203-207.
    [29] Sutter, Peter. "Epitaxial graphene: How silicon leaves the scene." Nature Materials 8.3 (2009): 171-172.
    [30] Yu, Qingkai, et al. "Graphene segregated on Ni surfaces and transferred to insulators." Applied Physics Letters 93 (2008): 113103.
    [31] Kubel, F., and Hans Schmid. "Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3." Acta Crystallographica Section B: Structural Science 46.6 (1990): 698-702.
    [32] Wang, J. B. N. J., et al. "Epitaxial BiFeO3 multiferroic thin film heterostructures." Science 299.5613 (2003): 1719-1722.
    [33] Michel, Christian, et al. "The atomic structure of BiFeO3." Solid State Communications 7.9 (1969): 701-704.
    [34] Ahn, C. H., K. M. Rabe, and J-M. Triscone. "Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures." Science 303.5657 (2004): 488-491.
    [35] Tybell, Th, et al. "Domain Wall Creep in Epitaxial Ferroelectric Pb (Zr0.2Ti0.8)O3 Thin Films." Physical review letters 89.9 (2002): 097601.
    [36] Zavaliche, F., et al. "Polarization switching in epitaxial BiFeO3 films." Applied Physics Letters 87.25 (2005): 252902-252902.
    [37] Todokoro, Hideo, and Makoto Ezumi. "Scanning electron microscope." U.S. Patent No. 5,872,358. 16 Feb. 1999.
    [38] Binnig, Gerd, Calvin F. Quate, and Ch Gerber. "Atomic force microscope." Physical review letters 56.9 (1986): 930.
    [39] Gruverman, A., and Sergei V. Kalinin. "Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics." Journal of materials science 41.1 (2006): 107-116.
    [40] Colthup, Norman B., Lawrence H. Daly, and Stephen E. Wiberley. Introduction to infrared and Raman spectroscopy. Academic press, 1990.
    [41] Raman, R. K., B. Gleeson, and D. J. Young. "Laser Raman spectroscopy: a technique for rapid characterisation of oxide scale layers." Materials science and technology 14.5 (1998): 373-376.
    [42] Hollander, Jack M., and William L. Jolly. "X-ray photoelectron spectroscopy." Accounts of Chemical Research 3.6 (1970): 193-200.
    [43] Ferrari, A. C., et al. "Raman spectrum of graphene and graphene layers."Physical review letters 97.18 (2006): 187401.
    [44] Yang, Dongxing, et al. "Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy." Carbon 47.1 (2009): 145-152.
    [45] Graf, Davy, et al. "Spatially resolved Raman spectroscopy of single-and few-layer graphene." Nano letters 7.2 (2007): 238-242.
    [46] Cançado, L. Gustavo, et al. "Quantifying defects in graphene via Raman spectroscopy at different excitation energies." Nano letters 11.8 (2011): 3190-3196.
    [47] Su, Ching-Yuan, et al. "Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors." Acs Nano 4.9 (2010): 5285-5292.
    [48] Matthews, M. J., et al. "Origin of dispersive effects of the Raman D band in carbon materials." Physical Review B 59.10 (1999): R6585.
    [49] Thomsen, C., and S. Reich. "Double resonant Raman scattering in graphite."Physical Review Letters 85.24 (2000): 5214.
    [50] Doniach, Sunjic, and M. Sunjic. "Many-electron singularity in X-ray photoemission and X-ray line spectra from metals." Journal of Physics C: Solid State Physics 3.2 (1970): 285.
    [51] Estrade-Szwarckopf, Henriette. "XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak." Carbon 42.8 (2004): 1713-1721.
    [52] Jackson, Stuart T., and Ralph G. Nuzzo. "Determining hybridization differences for amorphous carbon from the XPS C 1s envelope." Applied Surface Science90.2 (1995): 195-203.
    [53] Kumar, Shishir, et al. "Reliable processing of graphene using metal etchmasks." Nanoscale research letters 6.1 (2011): 1-4.
    [54] Pirkle, A., et al. "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2." Applied Physics Letters 99.12 (2011): 122108-122108.
    [55] McCann, Edward. "Asymmetry gap in the electronic band structure of bilayer graphene." Physical Review B 74.16 (2006): 161403.
    [56] Park, Cheol-Hwan, et al. "Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials." Nature Physics 4.3 (2008): 213-217.
    [57] Piscanec, S., et al. "Kohn anomalies and electron-phonon interactions in graphite." Physical review letters 93.18 (2004): 185503.
    [58] Pisana, Simone, et al. "Breakdown of the adiabatic Born–Oppenheimer approximation in graphene." Nature materials 6.3 (2007): 198-201.
    [59] Das, Anindya, et al. "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor." Nature nanotechnology 3.4 (2008): 210-215.
    [60] Lazzeri, Michele, and Francesco Mauri. "Nonadiabatic Kohn anomaly in a doped graphene monolayer." Physical review letters 97.26 (2006): 266407.
    [61] Ferrari, Andrea C. "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects." Solid State Communications 143.1 (2007): 47-57.
    [62] 曹雲. "石墨烯在氧化矽基板之鋁/箔塗層上其拉曼振動譜及同步輻射光致光電子能譜學研究."國立成功大學物理研究所, 碩士論文 (2012).
    [63] Araujo, P. T., et al. "Phonon self-energy corrections to nonzero wave-vector phonon modes in single-layer graphene." Physical Review Letters 109.4 (2012): 046801.

    [64] Stampfer, C., et al. "Raman imaging of doping domains in graphene on SiO2." Applied Physics Letters 91.24 (2007): 241907-241907.
    [65] Yan, Jun, et al. "Electric field effect tuning of electron-phonon coupling in graphene." Physical review letters 98.16 (2007): 166802.
    [66] Casiraghi, C., et al. "Raman fingerprint of charged impurities in graphene."Applied Physics Letters 91.23 (2007): 233108-233108.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE