簡易檢索 / 詳目顯示

研究生: 温凱峯
Wun, Hoi-Fung-Isaac
論文名稱: 探討早上尖峰時段公共運輸乘客運具選擇移轉之研究—以香港為例
A Case Study of Passengers’ Mode Shift Intention when Using Public Transportation at Early Peak in Hong Kong
指導教授: 鄭永祥
Cheng, Yung-Hsiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 106
中文關鍵詞: Hybrid選擇模型多項羅吉特模型港鐵黨鐵九龍巴士過度擁擠專營巴士運具轉移運輸系統飽和
外文關鍵詞: Hybrid discrete choice model, Multinomial Logit model, MTR, CTR, Kowloon Motor Bus, Overcrowding, Franchised bus, Mode shift, Oversaturation
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 香港的鐵路系統一直人滿為患。隨著香港人口的增加和新的社區擴展,包括舊區重建、開發棕地、高爾夫球場空地、填海造地等方式,至今依然有不同的新土地用作興建公私營房屋,預計社區人口過多問題將持續惡化。現有的港鐵重鐵系統的信號系統和繁忙時間班次已達到高峰時段的設計容量。因此,考慮在不增加現有的基建設備底下,開發替代運輸服務是緩解此問題的一種可能方法。過去的文獻討論主要集中在城際間交通方式的轉移上。然而,有關市內的公共交通服務選擇相關的研究非常罕見。因此,本研究探討了決定香港乘客選擇地鐵以外的公共交通工具的因素。

    考慮潛在變數和客觀屬性變數。在潛在變數方面,本研究使用行為推理理論來了解乘客使用不同類型的運輸服務(港鐵或專營巴士)的意願,這是在結構方程模型中衡量的。就客觀定性變數而言,分類選擇模型用於了解社會經濟變數如何影響使用不同類型運輸服務的選擇行為。然後使用潛在變數將兩個模型結合起來,以探討影響選擇行為的因素的程度。

    研究結果表明,“舒適”,“便利”和“體驗”的維度將影響乘客對不同類型巴士服務的偏好。以工作為目的乘車,在旅程途中無轉乘、男性、小學及以下教育程度的乘客偏向喜歡常規巴士服務;旅程前後不用連接車輛、沒持有港鐵/巴士月票、可享用交通補貼的乘客會偏向喜歡選擇繁忙時間特別班次服務;如乘客早上在07:00之前登車,會偏向喜歡選擇豪華巴士服務。研究結果可作為香港政府和香港巴士公司日後進一步考慮的參考。

    The railway system of Hong Kong has been experiencing a growing trend of overcrowding. The situation is expected to deteriorate as the population rises and new extensions are not yet completed. The existing signal systems and shifts have reached the designed capacity for peak hours. Therefore, considering existing alternative services is one of possible ways to alleviate the problem. In the past, literature discussion had concentrated on mode shift of inter-city transport. The selection of urban public transport services was very rare. Therefore, this study explores the factors determining Hong Kong passengers’ public transport choice other than the MTR. Latent variables and objective qualitative variable are considered. In terms of latent variables, this study uses the behavioral reasoning theory to understand the passengers’ willingness to use different types of bus services, which is measured in a structural equation model. In terms of objective qualitative variables, the disaggregate choice model is used to understand how socio-economic variables affect the choice behavior of using different types of bus services. Latent variables are then used to combine the two models to explore the extent to which factors affect the choice behavior. The results of the study show that the dimensions of "comfort", "convenience" and "experience" will affect passengers’ preference for different types of bus service. The passengers who take the bus with purpose of work, no transfer during bus journey, male and the education level primary or lower prefer regular bus service, do not connect the vehicle, no MTR/bus pass, eligible for subsidy preference special departure service, bus boarded time before 07:00 prefer choosing deluxe service. The results of this study can serve as a reference for further consideration by the Hong Kong government and bus companies in the city.

    Table of Contents i List of Tables vii List of Figures ix Chapter 1: Introduction 1 1.1 Motivation 1 1.1.1 Bottleneck of Mode Shift on public transport 1 1.1.2 Overcrowding of Metro System 2 1.2 Objectives of the study 5 1.3 Scope of the study 5 1.4 Research flowchart 8 Chapter 2: Literature Review 9 2.1 Trunk-feeder concept 10 2.2 Transit-Oriented-Development and the importance of Public Transport in a Transport-Oriented City 13 2.3 Accessibility of low-income workers in Hong Kong 14 2.3.1 Research conducted in Hong Kong 2011 15 2.3.2 Definition of early pear hour 15 2.4 Theory of Planned Behaviour Model 16 2.4.1 The Theory of Reasoned Action with person 16 2.4.2 The Theory of Reasoned Action with knowledge 17 2.5 Hybrid Discrete Choice Model 18 2.6 Summary 18 Chapter 3: Research Method 20 3.1 Stated Preference 22 3.2 Disaggregate Choice Model 22 3.3 Binary Logit Model and Multinomial Logit Model 24 3.4: Mixed Logit Model 26 3.5: Hybrid Discrete Choice Model 27 Chapter 4: Case Study 31 4.1 Ridership of metro in the cities of Asia 31 4.1.1 Ridership count of Asia cities 31 4.1.2 Public transportation modes in Hong Kong and its overcrowding concern 32 4.2 Location chosen of the research 32 4.2.1 Rising population in northwest New Territories 33 4.2.2 Current operate information of West Rail Line 33 4.3 Heavy reliance on Public Transport 35 4.3.1 Bus improvement and replacement 35 4.3.2 Train operation information regarding on all running lines 35 4.3.3 Personal behaviour on boarding MTR 36 4.4 New types of bus services 37 4.4.1 Special Departure 37 4.4.2 Introduce brand new deluxe bus service 39 Chapter 5: Research Model and Questionnaire Design 43 5.1 Hybrid Selection Model 43 5.2 Attribute level design of Alternative scheme 44 5.2.1 Qualitative Variables 44 5.2.2 Schemes comparation 51 5.3 Latent Variable Design 56 5.4 Questionnaire Design and Sampling Methods 60 5.4.1 Questionnaire design 60 5.4.2 Sampling methods 61 Chapter 6: Empirical analysis 62 6.1 Samples Stated Preference Analysis 63 6.2 Multinomial Logit Model analysis 71 6.2.1 Variables 71 6.2.2 Results 73 6.3 Hybrid Model Analysis 77 6.3.1 Measurement mode 77 6.3.2 Structural Equational Model 82 6.3.3 Regression analysis 83 6.3.4 Hybrid Selection Model 86 Chapter 7: Result and Recommendation 90 7.1 Results 90 7.2 Research Contribution 93 7.2.1 Academic Contribution 93 7.2.2 Practical Contribution 94 7.3 Research limitation and recommendation 94 7.3.1 Research limitation 94 7.3.2 Research recommendations 95 References 97 Appendix:Questionnaire 101

    Ajzen, & Fishbein, M. (1975). i Ajzen, I.(1975). Belief, Attitude, Intention, and Behaviour: An Introduction to Theory and Research. In: Addison-Wesley.
    Ajzen, I. (2011). The theory of planned behaviour: reactions and reflections. Psychol Health, 26(9), 1113-1127. doi:10.1080/08870446.2011.613995
    Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour.
    Beijing-Subway. (2018). Passengers flow. Retrieved from https://www.bjsubway.com/support/cxyd/klxx/
    Bekhor, S., & Albert, G. (2014). Accounting for sensation seeking in route choice behavior with travel time information. Transportation Research Part F: Traffic Psychology and Behaviour, 22, 39-49. doi:https://doi.org/10.1016/j.trf.2013.10.009
    Ben-Akiva, M., McFadden, D., Gärling, T., Gopinath, D., Walker, J., Bolduc, D., . . . Morikawa, T. (1999). Extended framework for modeling choice behavior. Marketing Letters, 10(3), 187-203.
    Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., . . . Bunch, D. S. (2002). Hybrid choice models: progress and challenges. Marketing Letters, 13(3), 163-175.
    Bertolini, L. (1999). Spatial Development Patterns and Public Transport: The Application of an Analytical Model in the Netherlands. Planning Practice and Research, 14.
    Burgdorf, C., Eisenkopf, A., & Knorr, A. (2018). User acceptance of long distance bus services in Germany. Research in Transportation Economics. doi:https://doi.org/10.1016/j.retrec.2018.07.023
    By-census, P. (2016). Snapshot of the Hong Kong Population.
    Cervero, R., & Gorham, R. (1995). Commuting in Transit Versus Automobile Neighborhoods. Journal of the American Planning Association, 61(2), 210-225. doi:Doi 10.1080/01944369508975634
    Chen, C.-F., & Chao, W.-H. (2011). Habitual or reasoned? Using the theory of planned behavior, technology acceptance model, and habit to examine switching intentions toward public transit. Transportation Research Part F: Traffic Psychology and Behaviour, 14(2), 128-137. doi:https://doi.org/10.1016/j.trf.2010.11.006
    Chen, C.-F., & Tsai, M.-H. (2008). Perceived value, satisfaction, and loyalty of TV travel product shopping: Involvement as a moderator. Tourism Management, 29(6), 1166-1171. doi:https://doi.org/10.1016/j.tourman.2008.02.019
    China-Association-Of-Metros. (2018). Annual Report. Retrieved from http://www.camet.org.cn/index.php?m=content&c=index&a=show&catid=18&id=13532
    Chowdhury, S., Hadas, Y., Gonzalez, V. A., & Schot, B. (2018). Public transport users' and policy makers' perceptions of integrated public transport systems. Transport Policy, 61, 75-83. doi:https://doi.org/10.1016/j.tranpol.2017.10.001
    City-Of-Seoul. (2016). Seoul Statistical Tables. Retrieved from http://stat.seoul.go.kr/octagonweb/jsp/WWS7/WWSDS7100.jsp
    De Vos, J. (2018). Do people travel with their preferred travel mode? Analysing the extent of travel mode dissonance and its effect on travel satisfaction. Transportation Research Part A: Policy and Practice, 117, 261-274. doi:https://doi.org/10.1016/j.tra.2018.08.034
    Deb, S., & Ali Ahmed, M. (2018). Determining the service quality of the city bus service based on users’ perceptions and expectations. Travel Behaviour and Society, 12, 1-10. doi:https://doi.org/10.1016/j.tbs.2018.02.008
    Hernandez, S., Monzon, A., & de Oña, R. (2016). Urban transport interchanges: A methodology for evaluating perceived quality. Transportation Research Part A: Policy and Practice, 84, 31-43. doi:https://doi.org/10.1016/j.tra.2015.08.008
    Hoglund, M. W. (2017). Safety-oriented bicycling and traffic accident involvement. IATSS Research. doi:https://doi.org/10.1016/j.iatssr.2017.10.004
    Irtema, H. I. M., Ismail, A., Borhan, M. N., Das, A. M., & Alshetwi, A. B. Z. (2018). Case study of the behavioural intentions of public transportation passengers in Kuala Lumpur. Case Studies on Transport Policy. doi:https://doi.org/10.1016/j.cstp.2018.05.007
    Japan-Subway-Association. (2018). 2018 Ridership Report. Japan-Subway-Association
    Kamruzzaman, M., Baker, D., Washington, S., & Turrell, G. (2014). Advance transit oriented development typology: case study in Brisbane, Australia. Journal of Transport Geography, 34(34), 54-70. doi:10.1016/j.jtrangeo.2013.11.002
    KMB. (2017). More about KMB 2017 [Press release]
    KMB. (2018). Timetable. Retrieved from http://search.kmb.hk/KMBWebSite/
    Lau, J. C. Y., & Chiu, C. C. H. (2003). Accessibility of low-income workers in Hong Kong. Cities, 20(3), 197-204. doi:10.1016/S0264-2751(03)00013-1
    Lee, E. S., & Meakin, R. T. (1998). PLANNING ROAD-BASED PUBLIC TRANSPORT SERVICES.
    Legislative-Council. (2007). West Rail service disruptions.
    Legislative-Council. (2016). MTR train service performance.
    Li, S., Zhou, X., Yang, L., & Gao, Z. (2018). Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework. 117, 228-253.
    Li, S. K., Dessouky, M. M., Yang, L. X., & Gao, Z. Y. (2017). Joint optimal train regulation and passenger flow control strategy for high-frequency metro lines. Transportation Research Part B-Methodological, 99, 113-137. doi:10.1016/j.trb.2017.01.010
    Lin, J. J., & Gau, C. C. (2006). A TOD planning model to review the regulation of allowable development densities around subway stations. Land Use Policy, 23(3), 353-360. doi:10.1016/j.landusepol.2004.11.003
    Liska, A. E. (1984). A Critical-Examination of the Causal-Structure of the Fishbein-Ajzen Attitude-Behavior Model. Social Psychology Quarterly, 47(1), 61-74. doi:Doi 10.2307/3033889
    MTR-Corporation. (2016). Ten-Year Statistics. from MTR-Corporation
    MTR. (2018). OVER 200 TRAIN TRIPS ARE ADDED WEEKLY ON THE TSEUNG KWAN O LINE DURING PEAK PERIODS. Retrieved from http://www.mtr.com.hk/en/customer/main/tkl_service_extend.html
    Rabl, A., & de Nazelle, A. (2012). Benefits of shift from car to active transport. Transport Policy, 19(1), 121-131. doi:10.1016/j.tranpol.2011.09.008
    Redman, L., Friman, M., Gärling, T., & Hartig, T. (2013). Quality attributes of public transport that attract car users: A research review. Transport Policy, 25, 119-127. doi:https://doi.org/10.1016/j.tranpol.2012.11.005
    Satiennam, T., Jaensirisak, S., Satiennam, W., & Detdamrong, S. (2016). Potential for modal shift by passenger car and motorcycle users towards Bus Rapid Transit (BRT) in an Asian developing city. IATSS Research, 39(2), 121-129. doi:10.1016/j.iatssr.2015.03.002
    Shen, W., Xiao, W., & Wang, X. (2016). Passenger satisfaction evaluation model for Urban rail transit: A structural equation modeling based on partial least squares. Transport Policy, 46, 20-31. doi:https://doi.org/10.1016/j.tranpol.2015.10.006
    Suman, H. K., Bolia, N. B., & Tiwari, G. (2018). Perception of potential bus users and impact of feasible interventions to improve quality of bus services in Delhi. Case Studies on Transport Policy. doi:https://doi.org/10.1016/j.cstp.2018.07.009
    Sun, G., & Zacharias, J. (2017). Can bicycle relieve overcrowded metro? Managing short-distance travel in Beijing. 35, 323-330.
    Sung, H., & Oh, J. T. (2011). Transit-oriented development in a high-density city: Identifying its association with transit ridership in Seoul, Korea. Cities, 28(1), 70-82. doi:10.1016/j.cities.2010.09.004
    Taipei-Rapid-Transit-Corporation. (2017). Ridership Counts. https://english.metro.taipei/cp.aspx?n=C702FF0562802D53&s=38B9066B229273BA
    Tang, S., & Lo, H. K. (2008). The impact of public transport policy on the viability and sustainability of mass railway transit – The Hong Kong experience. Transportation Research Part A, 42, 563-576.
    Transport-and-Housing-Bureau. (2017). Public Transport Strategy Study.
    Transport-Department. (2000). The Third Comprehensive Transport Study : Final Report.
    Transport-Department. (2014). Travel Characteristics Survey 2011 Final Report. Hong Kong Transport Department
    ARUP
    Valle, P. O. D., Rebelo, E., Reis, E., & Menezes, J. (2005). Combining behavioral theories to predict recycling involvement. 37(3), 364-396.

    無法下載圖示 校內:2024-12-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE