| 研究生: |
温凱峯 Wun, Hoi-Fung-Isaac |
|---|---|
| 論文名稱: |
探討早上尖峰時段公共運輸乘客運具選擇移轉之研究—以香港為例 A Case Study of Passengers’ Mode Shift Intention when Using Public Transportation at Early Peak in Hong Kong |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | Hybrid選擇模型 、多項羅吉特模型 、港鐵 、黨鐵 、九龍巴士 、過度擁擠 、專營巴士 、運具轉移 、運輸系統飽和 |
| 外文關鍵詞: | Hybrid discrete choice model, Multinomial Logit model, MTR, CTR, Kowloon Motor Bus, Overcrowding, Franchised bus, Mode shift, Oversaturation |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
香港的鐵路系統一直人滿為患。隨著香港人口的增加和新的社區擴展,包括舊區重建、開發棕地、高爾夫球場空地、填海造地等方式,至今依然有不同的新土地用作興建公私營房屋,預計社區人口過多問題將持續惡化。現有的港鐵重鐵系統的信號系統和繁忙時間班次已達到高峰時段的設計容量。因此,考慮在不增加現有的基建設備底下,開發替代運輸服務是緩解此問題的一種可能方法。過去的文獻討論主要集中在城際間交通方式的轉移上。然而,有關市內的公共交通服務選擇相關的研究非常罕見。因此,本研究探討了決定香港乘客選擇地鐵以外的公共交通工具的因素。
考慮潛在變數和客觀屬性變數。在潛在變數方面,本研究使用行為推理理論來了解乘客使用不同類型的運輸服務(港鐵或專營巴士)的意願,這是在結構方程模型中衡量的。就客觀定性變數而言,分類選擇模型用於了解社會經濟變數如何影響使用不同類型運輸服務的選擇行為。然後使用潛在變數將兩個模型結合起來,以探討影響選擇行為的因素的程度。
研究結果表明,“舒適”,“便利”和“體驗”的維度將影響乘客對不同類型巴士服務的偏好。以工作為目的乘車,在旅程途中無轉乘、男性、小學及以下教育程度的乘客偏向喜歡常規巴士服務;旅程前後不用連接車輛、沒持有港鐵/巴士月票、可享用交通補貼的乘客會偏向喜歡選擇繁忙時間特別班次服務;如乘客早上在07:00之前登車,會偏向喜歡選擇豪華巴士服務。研究結果可作為香港政府和香港巴士公司日後進一步考慮的參考。
The railway system of Hong Kong has been experiencing a growing trend of overcrowding. The situation is expected to deteriorate as the population rises and new extensions are not yet completed. The existing signal systems and shifts have reached the designed capacity for peak hours. Therefore, considering existing alternative services is one of possible ways to alleviate the problem. In the past, literature discussion had concentrated on mode shift of inter-city transport. The selection of urban public transport services was very rare. Therefore, this study explores the factors determining Hong Kong passengers’ public transport choice other than the MTR. Latent variables and objective qualitative variable are considered. In terms of latent variables, this study uses the behavioral reasoning theory to understand the passengers’ willingness to use different types of bus services, which is measured in a structural equation model. In terms of objective qualitative variables, the disaggregate choice model is used to understand how socio-economic variables affect the choice behavior of using different types of bus services. Latent variables are then used to combine the two models to explore the extent to which factors affect the choice behavior. The results of the study show that the dimensions of "comfort", "convenience" and "experience" will affect passengers’ preference for different types of bus service. The passengers who take the bus with purpose of work, no transfer during bus journey, male and the education level primary or lower prefer regular bus service, do not connect the vehicle, no MTR/bus pass, eligible for subsidy preference special departure service, bus boarded time before 07:00 prefer choosing deluxe service. The results of this study can serve as a reference for further consideration by the Hong Kong government and bus companies in the city.
Ajzen, & Fishbein, M. (1975). i Ajzen, I.(1975). Belief, Attitude, Intention, and Behaviour: An Introduction to Theory and Research. In: Addison-Wesley.
Ajzen, I. (2011). The theory of planned behaviour: reactions and reflections. Psychol Health, 26(9), 1113-1127. doi:10.1080/08870446.2011.613995
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour.
Beijing-Subway. (2018). Passengers flow. Retrieved from https://www.bjsubway.com/support/cxyd/klxx/
Bekhor, S., & Albert, G. (2014). Accounting for sensation seeking in route choice behavior with travel time information. Transportation Research Part F: Traffic Psychology and Behaviour, 22, 39-49. doi:https://doi.org/10.1016/j.trf.2013.10.009
Ben-Akiva, M., McFadden, D., Gärling, T., Gopinath, D., Walker, J., Bolduc, D., . . . Morikawa, T. (1999). Extended framework for modeling choice behavior. Marketing Letters, 10(3), 187-203.
Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., . . . Bunch, D. S. (2002). Hybrid choice models: progress and challenges. Marketing Letters, 13(3), 163-175.
Bertolini, L. (1999). Spatial Development Patterns and Public Transport: The Application of an Analytical Model in the Netherlands. Planning Practice and Research, 14.
Burgdorf, C., Eisenkopf, A., & Knorr, A. (2018). User acceptance of long distance bus services in Germany. Research in Transportation Economics. doi:https://doi.org/10.1016/j.retrec.2018.07.023
By-census, P. (2016). Snapshot of the Hong Kong Population.
Cervero, R., & Gorham, R. (1995). Commuting in Transit Versus Automobile Neighborhoods. Journal of the American Planning Association, 61(2), 210-225. doi:Doi 10.1080/01944369508975634
Chen, C.-F., & Chao, W.-H. (2011). Habitual or reasoned? Using the theory of planned behavior, technology acceptance model, and habit to examine switching intentions toward public transit. Transportation Research Part F: Traffic Psychology and Behaviour, 14(2), 128-137. doi:https://doi.org/10.1016/j.trf.2010.11.006
Chen, C.-F., & Tsai, M.-H. (2008). Perceived value, satisfaction, and loyalty of TV travel product shopping: Involvement as a moderator. Tourism Management, 29(6), 1166-1171. doi:https://doi.org/10.1016/j.tourman.2008.02.019
China-Association-Of-Metros. (2018). Annual Report. Retrieved from http://www.camet.org.cn/index.php?m=content&c=index&a=show&catid=18&id=13532
Chowdhury, S., Hadas, Y., Gonzalez, V. A., & Schot, B. (2018). Public transport users' and policy makers' perceptions of integrated public transport systems. Transport Policy, 61, 75-83. doi:https://doi.org/10.1016/j.tranpol.2017.10.001
City-Of-Seoul. (2016). Seoul Statistical Tables. Retrieved from http://stat.seoul.go.kr/octagonweb/jsp/WWS7/WWSDS7100.jsp
De Vos, J. (2018). Do people travel with their preferred travel mode? Analysing the extent of travel mode dissonance and its effect on travel satisfaction. Transportation Research Part A: Policy and Practice, 117, 261-274. doi:https://doi.org/10.1016/j.tra.2018.08.034
Deb, S., & Ali Ahmed, M. (2018). Determining the service quality of the city bus service based on users’ perceptions and expectations. Travel Behaviour and Society, 12, 1-10. doi:https://doi.org/10.1016/j.tbs.2018.02.008
Hernandez, S., Monzon, A., & de Oña, R. (2016). Urban transport interchanges: A methodology for evaluating perceived quality. Transportation Research Part A: Policy and Practice, 84, 31-43. doi:https://doi.org/10.1016/j.tra.2015.08.008
Hoglund, M. W. (2017). Safety-oriented bicycling and traffic accident involvement. IATSS Research. doi:https://doi.org/10.1016/j.iatssr.2017.10.004
Irtema, H. I. M., Ismail, A., Borhan, M. N., Das, A. M., & Alshetwi, A. B. Z. (2018). Case study of the behavioural intentions of public transportation passengers in Kuala Lumpur. Case Studies on Transport Policy. doi:https://doi.org/10.1016/j.cstp.2018.05.007
Japan-Subway-Association. (2018). 2018 Ridership Report. Japan-Subway-Association
Kamruzzaman, M., Baker, D., Washington, S., & Turrell, G. (2014). Advance transit oriented development typology: case study in Brisbane, Australia. Journal of Transport Geography, 34(34), 54-70. doi:10.1016/j.jtrangeo.2013.11.002
KMB. (2017). More about KMB 2017 [Press release]
KMB. (2018). Timetable. Retrieved from http://search.kmb.hk/KMBWebSite/
Lau, J. C. Y., & Chiu, C. C. H. (2003). Accessibility of low-income workers in Hong Kong. Cities, 20(3), 197-204. doi:10.1016/S0264-2751(03)00013-1
Lee, E. S., & Meakin, R. T. (1998). PLANNING ROAD-BASED PUBLIC TRANSPORT SERVICES.
Legislative-Council. (2007). West Rail service disruptions.
Legislative-Council. (2016). MTR train service performance.
Li, S., Zhou, X., Yang, L., & Gao, Z. (2018). Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework. 117, 228-253.
Li, S. K., Dessouky, M. M., Yang, L. X., & Gao, Z. Y. (2017). Joint optimal train regulation and passenger flow control strategy for high-frequency metro lines. Transportation Research Part B-Methodological, 99, 113-137. doi:10.1016/j.trb.2017.01.010
Lin, J. J., & Gau, C. C. (2006). A TOD planning model to review the regulation of allowable development densities around subway stations. Land Use Policy, 23(3), 353-360. doi:10.1016/j.landusepol.2004.11.003
Liska, A. E. (1984). A Critical-Examination of the Causal-Structure of the Fishbein-Ajzen Attitude-Behavior Model. Social Psychology Quarterly, 47(1), 61-74. doi:Doi 10.2307/3033889
MTR-Corporation. (2016). Ten-Year Statistics. from MTR-Corporation
MTR. (2018). OVER 200 TRAIN TRIPS ARE ADDED WEEKLY ON THE TSEUNG KWAN O LINE DURING PEAK PERIODS. Retrieved from http://www.mtr.com.hk/en/customer/main/tkl_service_extend.html
Rabl, A., & de Nazelle, A. (2012). Benefits of shift from car to active transport. Transport Policy, 19(1), 121-131. doi:10.1016/j.tranpol.2011.09.008
Redman, L., Friman, M., Gärling, T., & Hartig, T. (2013). Quality attributes of public transport that attract car users: A research review. Transport Policy, 25, 119-127. doi:https://doi.org/10.1016/j.tranpol.2012.11.005
Satiennam, T., Jaensirisak, S., Satiennam, W., & Detdamrong, S. (2016). Potential for modal shift by passenger car and motorcycle users towards Bus Rapid Transit (BRT) in an Asian developing city. IATSS Research, 39(2), 121-129. doi:10.1016/j.iatssr.2015.03.002
Shen, W., Xiao, W., & Wang, X. (2016). Passenger satisfaction evaluation model for Urban rail transit: A structural equation modeling based on partial least squares. Transport Policy, 46, 20-31. doi:https://doi.org/10.1016/j.tranpol.2015.10.006
Suman, H. K., Bolia, N. B., & Tiwari, G. (2018). Perception of potential bus users and impact of feasible interventions to improve quality of bus services in Delhi. Case Studies on Transport Policy. doi:https://doi.org/10.1016/j.cstp.2018.07.009
Sun, G., & Zacharias, J. (2017). Can bicycle relieve overcrowded metro? Managing short-distance travel in Beijing. 35, 323-330.
Sung, H., & Oh, J. T. (2011). Transit-oriented development in a high-density city: Identifying its association with transit ridership in Seoul, Korea. Cities, 28(1), 70-82. doi:10.1016/j.cities.2010.09.004
Taipei-Rapid-Transit-Corporation. (2017). Ridership Counts. https://english.metro.taipei/cp.aspx?n=C702FF0562802D53&s=38B9066B229273BA
Tang, S., & Lo, H. K. (2008). The impact of public transport policy on the viability and sustainability of mass railway transit – The Hong Kong experience. Transportation Research Part A, 42, 563-576.
Transport-and-Housing-Bureau. (2017). Public Transport Strategy Study.
Transport-Department. (2000). The Third Comprehensive Transport Study : Final Report.
Transport-Department. (2014). Travel Characteristics Survey 2011 Final Report. Hong Kong Transport Department
ARUP
Valle, P. O. D., Rebelo, E., Reis, E., & Menezes, J. (2005). Combining behavioral theories to predict recycling involvement. 37(3), 364-396.
校內:2024-12-30公開