簡易檢索 / 詳目顯示

研究生: 蔡穎頡
Cai, Ying-jie
論文名稱: 銀與硫化物反應後之特性分析及應用
Characterization and application of silver reacted with sulfide
指導教授: 溫添進
Wen, Ten-chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 99
中文關鍵詞: 硫化銀噻吩吸附誘導聚合生化感測維他命C多巴胺
外文關鍵詞: dopamine, ascorbic acid, biosensing, adsorption-induced polymerization, thiophene, silver sulfide, silver
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究包含兩部份,第一部分是關於三甲基噻吩在銀表面上吸附誘導聚合之特性研究,三甲基噻吩在無施加電流、電位、化學氧化劑、以及其他能量的條件下,可在銀表面上自發性地發生聚合反應。從紫外光/可見光光譜觀察到銀基板之最大反射波峰會隨浸泡時間而產生紅位移(Red shift)現象,且波峰形狀越來越寬廣;從掃瞄式電子顯微鏡發現銀基板上有高分子生成;從X光光電子能譜發現銀與硫之間有顯著的交互作用,此表示三甲基噻吩藉由強力的硫銀鍵結而吸附在銀基板表面;最後利用拉曼光譜與循環伏安法鑑定聚三甲基噻吩的結構形態與電化學特性,並推導聚三甲基噻吩之聚合機制。此外我們發現不同官能基的噻吩衍生物其聚合反應行為皆不相同,推測可能與官能基之推、拉電子能力或立體障礙效應有關。
    論文第二部分則是利用物理氣相法製備銀電極,並以簡易的循環伏安法於銀電極表面修飾上一層硫化銀,最後將此硫化銀修飾銀電極應用於多巴胺之感測。從循環伏安圖和差式脈衝伏安圖中發現,即使溶液中含有高濃度的維他命C,多巴胺與維他命C兩者的氧化波峰仍可以分離,且多巴胺的氧化電流密度與其濃度呈現良好的線性關係,此代表硫化銀修飾銀電極對於多巴胺之感測具有不錯的靈敏度(Sensitivity)與選擇性(Selectivity)。

    In this thesis, it studies on the silver application in adsorption-induced polymerization of thiophene derivatives and biosensor. The contents include two parts:
    In first section, the adsorption-induced polymerization of 3-methylthiophene (3MT) on silver surface was investigated and characterized. P3MT would be spontaneously synthesized on silver surface without any driving force such as current, potential, chemical oxidants. X-ray photoelectron spectroscope showed that 3-methylthiophene was absorbed upon silver surface via Ag-S bonding. In addition, the UV-Vis spectroscopic and scanning electron microscopic (SEM) results revealed that the formation of P3MT. The electrochemical property and polymer structure of P3MT were identified using cyclic voltammetric method and Micro-Raman spectroscope. It was found that the monomer with different functional groups would affect the polymerization reaction of thiophene derivatives owing to the electro-withdrawing/donating ability or the steric hindrance effect of functional groups.
    In the second section, silver sulfide modified silver electrode which was prepared by electrochemically deposition applied in electroanalysis of dopamine, Through cyclic voltammetric and differential pulse voltammetric measurement, silver sulfide modified silver electrode was demonstrated good sensing ability for dopamine and had excellent electrocatalytic ability toward ascorbic acid oxidation. The modified electrode resolved the overlapping voltammetric responses of dopamine and ascorbic acid into two well-defined voltammetric peaks and showed a linear calibration curve over the range from 1μM to 100 μM, The modified electrode possessed good sensitivity and selectivity in dopamine biosensing.

    目錄 中文摘要......................................................................................................................Ⅰ 英文摘要......................................................................................................................Ⅲ 致謝..............................................................................................................................Ⅴ 目錄..............................................................................................................................Ⅵ 圖目錄..........................................................................................................................Ⅷ 表目錄......................................................................................................................ⅩⅠ 第一章 緒論..................................................................................................................1 1-1 銀的簡介.................................................................................................................1 1-1-1 銀的衍生物與應用.....................................................................................2 1-1-2 銀與生化感測.............................................................................................8 1-2 銀與硫化物...........................................................................................................10 1-2-1 金屬硫化物...............................................................................................10 1-2-2 銀與有機硫化物之作用與特性...............................................................12 1-2-2-1 吸附、脫硫、裂解.......................................................................12 1-2-2-2 自組裝單分子層........................................................................13 1-2-2-3 吸附誘導聚合............................................................................14 1-3 研究動機...............................................................................................................15 第二章 三甲基噻吩於銀表面上吸附誘導聚合行為之研究....................................17 2-1 前言.......................................................................................................................17 2-2 實驗部分...............................................................................................................18 2-2-1 藥品與裝置...............................................................................................18 2-2-2 玻璃基板之前處理...................................................................................19 2-2-3 銀基板之製備...........................................................................................20 2-2-4 聚三甲基噻吩-銀之合成步驟..................................................................20 2-2-5 反射式紫外光/可見光光譜......................................................................21 2-2-6 材料表面型態之分析...............................................................................21 2-2-7 X光光電子能譜儀....................................................................................21 2-2-8 歐傑電子顯微鏡.......................................................................................22 2-2-9 電化學分析與測試...................................................................................22 2-2-10 微拉曼及微光激發光譜儀.....................................................................22 2-3 結果與討論..........................................................................................................23 2-3-1 聚三甲基噻吩-銀之紫外光/可見光光譜研究........................................23 2-3-2 聚三甲基噻吩-銀之表面型態分析.........................................................25 2-3-3 化學元素鑑定...........................................................................................26 2-3-4 拉曼光譜之研究.......................................................................................27 2-3-5 聚三甲基噻吩-銀電極之電化學性質分析..............................................28 2-3-6 不同官能基噻吩衍生物於銀表面之作用……………….......................29 2-3-7 聚合機制之探討.......................................................................................30 2-3-8 聚三甲基噻吩-銀電極電催化效果之研究..............................................32 2-4 結論.......................................................................................................................33 第三章 硫化銀修飾銀電極應用於多巴胺感測之研究............................................50 3-1 前言.......................................................................................................................50 3-2 實驗部分...............................................................................................................52 3-2-1 藥品與裝置...............................................................................................52 3-2-2 玻璃基板之前處理...................................................................................53 3-2-3 銀電極之製備...........................................................................................54 3-2-4 硫化銀修飾銀電極之製備步驟...............................................................54 3-2-5 表面型態分析...........................................................................................57 3-2-6 X射線繞射儀.............................................................................................55 3-2-7 X光光電子能譜儀.....................................................................................56 3-2-8 歐傑電子光譜...........................................................................................56 3-2-9 電化學分析與測試...................................................................................56 3-3 結果與討論...........................................................................................................57 3-3-1 銀電極之特性分析...................................................................................57 3-3-2 硫化銀修飾銀電極之製備與特性分析...................................................59 3-3-3 硫化銀修飾銀電極之化學元素分析.......................................................60 3-3-4 硫化銀修飾銀電極應用於多巴胺及維他命C測試之研究.....................60 3-3-5 硫化銀修飾銀電極的催化效果...............................................................63 3-3-5 多巴胺感測之研究...................................................................................64 3-3-6 維他命C干擾之研究.................................................................................66 3-4 結論.......................................................................................................................67 第四章 結論與建議....................................................................................................83 4-1 結論.......................................................................................................................83 4-2 未來工作建議.......................................................................................................84 參考文獻......................................................................................................................86 自述..............................................................................................................................99

    1. G. Schiavon, G. Z. R. Toniolo and G. Bontempelli, "Electrochemical detection of trace hydrogen sulfide in gaseous samples by porous silver electrodes supported on ion-exchange membranes (solid polymer electrolytes)", Anal. Chem., 67, 318-323 (1996).
    2. H. Yuehua, Q. Guanzhou, W. Jun and W. Dianzuo, "The effect of silver-bearing catalysts on bioleaching of chalcopyrite", Hydrometallurgy, 64, 81-88 (2002).
    3. T. H. James, Ed, "The Theory of the Photographic Process", 4th ed., MacMillan, New York, (1977).
    4. 周更生, 李賢學, 高振裕, 盧育杰, "科學發展", 408, 32-39 (2006).
    5. H. W. Choi, S. Y. Kim, K. B. Kim, Y. H. Tak and J. L. Lee, "Enhancement of hole injection using O2 plasma-treated Ag anode for top-emitting organic light-emitting diodes", Appl. Phys. Lett., 86, 012104-1-012104-3 (2005).
    6. D. W. Han, M. S. Lee, M. H. Lee, M. Uzawa and J. C. Park, "The use of silver-coated ceramic beads for sterilization of Sphingomonas sp. in drinking mineral water", World Journal of Microbiology & Biotechnology, 21, 921-924 (2005).
    7. Z. M. Hu, H. Nakai and H. Nakatsuji, "Oxidation mechanism of propylene on an Ag surface: dipped adcluster model study", Surface Science, 401, 371-391 (1998).
    8. H. Nakatsuji, Z. M. Hu and H. Nakai, "Theoretical studies on the catalytic activity of Ag surface for the oxidation of olefins", International Journal of Quantum Chemistry, 65, 839-855 (1997).
    9. G. J. Millar, J. B. Metson, G. A. Bowmaker and R. P. Cooney, "Characterization of the active site for the selective oxidation of methanol to formaldehyde on polycrystalline silver catalyst", J. Chem. Soc., Chem. Commun., 1717-1718 (1994).
    10. C. Guldur and F. Balikci, "Selective carbon monoxide oxidation over Ag-based composite oxides", International Journal of Hydrogen Energy, 27, 219-224 (2002).
    11. L. Gang, B. G. Anderson, J. V. Grondelle and R. A. V. Santen, "Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts", Applied Catalysis B: Environmental, 40, 101-110 (2003).
    12. A. Keshavaraja, X. She and M. F. Stephanopoulos, "Selective catalytic reduction of NO with methane over Ag-alumina catalysts", Applied Catalysis B: Environmental, 27, L1-L9 (2000).
    13. N. Bogdanchikova, F. C. Meunier, M. A. Borja, J. P. Breen and A. Pestryakov, "On the nature of the silver phases of Ag/Al2O3 catalysts for reactions involving nitric oxide", Applied Catalysis B: Environmental, 36, 287-297 (2002).
    14. G. J. A. Vidugiris, V. J. Razumas, A. A. Drungiliene and J. J. Kulys, "Complex formation of amino acids and proteins with silver ions", Bioelectrochemistry and Bioenergetics, 19(3), 513-520 (1988).
    15. G. Li, H. Chen and D. Zhu, "A new method for the voltammetric response of hemoglobin", Journal of Inorganic Biochemistry, 63, 207-214 (1996).
    16. G. Li, X. Liao, H. Fang and H. Chen, "Direct electron transfer reaction of hemoglobin at the bare silver electrode", Journal of Electroanalytical Chemistry, 369(1-2), 267-269 (1994).
    17. B. Ye and X. Zhou, "Direct electrochemical redox of tyrosinase at silver electrodes", Talanta, 44, 831-836 (1997).
    18. D. E. Reed and F. M. Hawkridge, "Direct electron transfer reactions of cytochrome c at silver electrodes", Anal. Chem., 59(19), 2334-2339 (1987).
    19. L. Huihong, Y. Baoxian, Z. Wuming and Z. Xingyao, "The voltammetric behavior of Concanavalin A at bare silver electrode and analytical application", Wuhan University Journal of Natural Sciences, 2(3), 337-340 (1997).
    20. G. Li, J. Zhu, H. Fang, H. Chen and D. Zhua, "Voltammetric response of Nicotinamide Coenzyme I at a silver electrode", J. Electrochem. Soc., 143(7), L141-L142 (1996).
    21. C. Fan,H. Song, X. Hu,G. Li, J. Zhu, X. Xu and D. Zhu, "Voltammetric response and determination of DNA with a silver electrode", Analytical Biochemistry, 271, 1-7 (1999).
    22. S. Stewart and P.M. Fredericks, "Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface", Spectrochimica Acta Part A, 55, 1641-1660 (1999).
    23. M. R. Guascitoa, E. Filippo, C. Malitesta, D. Manno, A. Serrab and A. Turcoa, "A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide", Biosensors and Bioelectronics, 24, 1057-1063 (2008).
    24. S. R. Zarchi, A. A. Saboury, P. Norouzi, J. Hong, S. Ahmadian, M. R. Ganjali, A. A. M. Movahedi, A. B. Moghaddam and A. Javed, "Use of silver nanoparticles as an electron transfer facilitator in electrochemical ligand-binding of haemoglobin", J. Appl. Electrochem., 37, 1021-1026 (2007).
    25. X. Rena, X. Menga, D. Chena, F. Tanga and J. Jiao, "Using silver nanoparticle to enhance current response of biosensor", Biosensors and Bioelectronics, 21, 433-437 (2005).
    26. X. Luo, A. Morrin, A. J. Killard and M. R. Smyth, "Application of nanoparticles in electrochemical sensors and biosensors", Electroanalysis, 18(4), 319-326 (2006).
    27. D. Graham, K. Faulds and W. E. Smith, "Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering", Chem. Commun., 4363-4371 (2006).
    28. R. G. Cope and H. J. Goldsmid, "Thermal switching in silver sulphide and some of its alloys", Brit. J. Appl. Phys., 16, 1501-1507 (1965).
    29. M. J. Mangalam, K. N. Rao, N. Rangarajan and C. V. Suryanarayana, "Electrical and photoconductive properties of silver sulphide cells", Brit, J. Appl. Phys., 2, 1644-1648 (1969).
    30. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes", Nature, 261, 403-404 (1976).
    31. W. Zhang, L. Zhang, Z. Hui, X. Zhang and Y. Qian, "Synthesis of nanocrystalline Ag2S in aqueous solution", Solid State Ionics, 130, 111-114 (2000).
    32. B.R. Sankapal, R. S. Mane and C. D. Lokhande, "A new chemical method for the preparation of Ag2S thin films", Materials Chemistry and Physics, 63, 226-229 (2000).
    33. X. Changqi, Z. Zhicheng and Y. Qiang, "A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nano-crystallite", Materials Letters, 58, 1671-1676 (2004).
    34. C. Tian, Z. Kang, E. Wang, B. Mao, S. Li, Z. Su and L. Xu, "‘One-step’ controllable synthesis of Ag and Ag2S nanocrystals on a large scale", Nanotechnology, 17, 5681-5685 (2006).
    35. X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, L. X. Zhoa, Y. W. Wang and L. D. Zhang, "Electrochemical fabrication of ordered Ag2S nanowire arrays", Materials Research Bulletin, 37, 1369-1375 (2002).
    36. R. Kumar, V. Kumar, S. K. Chakaravarti, "Electrochemical synthesis of conical Ag2S nanostructures and their optical properties", Journal of Materials Science, 40, 3523-3525 (2005).
    37. D. W. Hatchett, X. Gao, S. W. Catron and H. S. White, "Electrochemistry of sulfur adlayers on Ag (111). Evidence for a concentration- and potential- dependent surface-phase transition", J. Phys. Chem., 100(1), 331-338 (1996).
    38. 李麗芳, 王小萍, “利用NBO理論計算來探討分子自組裝薄膜製程內硫醇與過渡金屬(Cu、Ag、Au)間的配位共價性”, 國立成功大學碩士論文, 中華民國九十五年七月.
    39. F. P. Cometto, P. P. Olivera, V. A. Macagno and E. M. Patrito, "Density functional theory study of the adsorption of alkanethiols on Cu(111), Ag(111), and Au(111) in the low and high coverage regimes", J. Phys. Chem. B, 109, 21737-21748 (2005).
    40. C. J. Sandroff and D. R. Herschbach, "Surface-enhanced Raman study of organic sulfides adsorbed on silver: facile cleavage of S-S and C-S bonds", J. Phys. Chem., 86, 3277-3279 (1982).
    41. M. Venkataramanan, G. Skanth, K. Bandyopadhyay, K. Vijayamohanan and T. Pradeep, "Self-assembled monolayers of two aromatic disulfides and a diselenide on polycrystalline silver films: An investigation by SERS and XPS", Journal of Colloid and Interface Science, 212, 553-561 (1999).
    42. H. Sellers, A. Ulman, Y. Shnidman and J. E. Eilers, "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers", J. Am. Chem. Soc., 115(21), 9389-9401 (1993).
    43. P. Vaterlein, M. Schmelzer, J. Taborski, T. Krause, F. Viczian, M. BaBler, R. Fink, E. Umbach and W. Wurth, "Orientation and bonding of thiophene and 2,2'-bithiophene on Ag(111): a combined near edge extended X-ray absorption fine structure and Xα scattered-wave study", Surface Science, 452, 20-32 (2000).
    44. S. Subramanian and S. Sampath, "Self assembled monolayers of alkanethiols on silver surfaces", Journal of the Indian Institute of Science, 89, 1-7 (2009).
    45. M. A. Bryant and J. E. Pemberton, "Surface Raman scattering of self-assembled monolayers formed from 1-Alkanethiols at Ag", J. Am. Chem. Soc., 113, 3629-3637 (1991).
    46. A. Ulman, "Formation and structure of self-Assembled monolayers", Chem. Rev., 96(4), 1533-1554 (1996).
    47. C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu and C. C. Wua, "Top-emitting organic light-emitting devices using surface-modified Ag anode", Applied Physics Letters, 83, 5127-5129 (2003).
    48. N. K. Guimard, N. Gomez and C. E. Schmidt, "Conducting polymers in biomedical engineering", Prog. Polym. Sci., 32, 876-921 (2007).
    49. G. Compagnini, A. D. Bonis, R. S. Cataliotti and G. Marletta, "Spectroscopic evidence for adsorption-induced polymerisation of terthiophene at silver surfaces", Phys. Chem. Chem. Phys., 2, 5298-5301 (2002).
    50. R. G. Pearson, "Hard and Soft Acids and Bases", J. Am. Chem. Soc., 85(22), 3533-3539 (1963).
    51. G. R. Schoofs, R. E. Preston and J. B. Benziger, "Adsorption and desulfurization of thiophene on nickel (111)", Langmuir, 1, 313-320 (1985).
    52. L. Cheng, A. B. Bocarsly, S. L. Bernasek and T. A. Ramanarayanan, "Adsorption and reaction of thiophene on the Fe (100) surface: selective dehydrogenation and polymerization", Surface Science, 374, 357-372 (1997).
    53. J. Roncali, "Conjugated poly(thiophenes): synthesis, functionalization, and applications", Chem. Rev., 92 (4), 711-738 (1992).
    54. E. C. Rios, A. V. Rosario, R. M.Q. Mello and L. Micaroni, "Poly(3-methylthiophene)/MnO2 composite electrodes as electrochemical capacitors", Journal of Power Sources, 163, 1137-1142 (2007).
    55. K.S.V. Santhanama, R. Sangoia and L. Fullerc, "A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene)", Sensors and Actuators B, 106, 766-771 (2005).
    56. L. Torsi, M. Pezzuto, P. Sociliano, R. Rella, L. Sabbatini, L. Valli and P. G. Zambonin, "Conducting polymers doped with metallic inclusions: New materials for gas sensors", Sensors and Actuators B, 48, 362-367 (1998).
    57. F. Garniera, G. Tourillona, M. Gazardb and J.C. Duboisb, "Organic conducting polymers derived from substituted thiophenes as electrochromic material", Journal of Electroanalytical Chemistry, 148, 299-303 (1983).
    58. 58.. K. Takahashi and E. Tsuchida, "A photochargeable device composed of bilayer membranes of poly(3-methylthiophene) and Prussian blue", Journal of Electroanalytical Chemistry, 227, 255-258 (1987).
    59. Mastragostino M, Marinangeliam, Corradini A and Giacobee S, "Conducting polymers as electrochromic materials", Synthetic Metals, 28, 501-506 (1989).
    60. H. Zhang, S. K. Lunsford, I. Marawi, J. F. Rubinson and H. B. Mark Jr., "Optimization of preparation of poly(3-methylthiophene) -modified Pt microelectrodes for detection of catecholamines", Journal of Electroanalytical Chemistry, 424, 101-111 (1997).
    61. N.F. Atta, I. Marawi, K. L. Petticrew, H. Zimmer, H. B. Mark Jr. and A. Galal, "Electrochemistry and detection of some organic and biological molecules at conducting polymer electrodes. Part 3. Evidence of the electrocatalytic effect of heteroatom of the poly (hetetroarylene) at the electrode / electrolyte interface", Journal of Electroanalytical Chemistry, 408, 47-52 (1996).
    62. H. Zhang, A. Galal, J. F. Rubinson, I. Marawi, T. H. Ridgway, S. K. Lunsford, H. Zimmer and H. B. Mark Jr., "Flow injection amperometric detection of catechol using dual-band poly(3-methylthiophene) electrodes", Electrochimica Acta, 43, 3511-3524 (1998).
    63. H. S. Wang, D. Q. Huang and R. M. Liu, "Study on the electrochemical behavior of epinephrine at a poly(3-methylthiophene)-modified glassy carbon electrode", Journal of Electroanalytical Chemistry, 570, 83–90 (2004).
    64. A. Nambu, H. Kondoh, I. Nakai, K. Amemiya and T. Ohta, "Film growth and X-ray induced chemical reactions of thiophene adsorbed on Au (111)", Surface Science, 530, 101–110 (2003).
    65. X. Saintigny, R. A. van Santen, S. Cl’emendot, and F. Hutschkay, "A theoretical study of the solid acid catalyzed desulfurization of thiophene", Journal of Catalysis, 183, 107–118 (1999).
    66. F. Terzi, R. Seeber, L. Pigani, C. Zanardi, L. Pasquali, S. Nannarone, M. Fabrizio and S. Daolio, "3-Methylthiophene self-assembled monolayers on planar and nanoparticle Au surfaces", J. Phys. Chem. B, 109, 19397-19402 (2005).
    67. J. Guay, P. Kasai, A. Dim, R. Wu, J. M. Tour and L. H. Dao, "Chain-length dependence of electrochemical and electronic properties of neutral and oxidized soluble α, α-coupled thiophene oligomers", Chem. Mater., 4, 1097-1105 (1992).
    68. I. Villarreal, E. Morales and J. L. Acosta, "Electrochemical synthesis of poly(3-methylthiophene): a kinetic study", Journal of Polymer Science: Part B: Polymer Physics, 38, 1258-1266 (2000).
    69. D. Singh, S. Dubey, B. M. Prasad and R. A. Misra, "Electrochemical synthesis and properties of poly(3-methylthiophene): novel synthesis of poly(3-methyl- thiophene) with pentachlorostannate and hexachloroantimonate", Journal of Applied Polymer Science, 73, 91-102 (1999).
    70. G. Zotti, G. Schiavon, A. Berlin and G. Pagani, "Thiophene oligomers as polythiophene models. 1. Anodic coupling of thiophene oligomers to dimers: a kinetic investigation", Chem. Mater., 5, 430-436 (1993).
    71. L. Zhou, S. Jin and G. Xue, "Electrosynthesis of poly (3-methylthiophene) films with high strength and stabile conductive properties", Macromol. Chem. Phys., 197, 3309-3315 (1996).
    72. H. Neugebauer, G. Nauer, A. Neckel, G. Tourillon, F. Garnier and P. Lang, "In situ investigations of the 3-methylthiophene polymer with attenuated total reflection Fourier transform infrared spectroscopy", J. Phys. Chem., 88, 652-654 (1984).
    73. H. S. O. Chan and S. C. Ng, "Synthesis, characterization and applications of thiophene-based functional polymers", Prog. Polym. Sci., 23, 1167-1231 (1998).
    74. E. O. Sako, H. Kondoh, I. Nakai, A. Nambu, T. Nakamura and T. Ohta, "Reactive adsorption of thiophene on Au (111) from solution", Chemical Physics Letters, 413, 267-271 (2005).
    75. J. F. Moulder, "Handbook of X-ray photoelectroscopy: a reference book of standard spectra for identification and interpretation of XPS data", Physical Electronics, 1995.
    76. T. Ishida, N. Choi, W. Mizutani, H. Tokumoto, I. Kojima, H. Azehara, H. Hokari, U. Akiba and M. Fujihira, "High-resolution X-ray photoelectron spectra of organosulfur monolayers on Au (111): S(2p) spectral dependence on molecular species", Langmuir, 15, 6799-6806 (1999).
    77. C. M. G. Bachl and J. R. Reynolds, "Rapid ion exchange during redox switching of poly(3-methylthiophene) studied by X-ray photoelectron spectroscopy", J. Phys. Chem., 98, 13636-13642 (1994).
    78. K. Mukherjee, D. Bhattacharjee and T. N. Misra, "Surface enhanced Raman spectroscopic study of isomeric methylthiophenes in silver colloid", Journal of Colloid and Interface Science, 213, 46-52 (1999).
    79. A. Pron, G. Louarn, M. Lapkowski, M. Zagorska, J. Glowczyk-Zubek and S. Lefrant, "“In situ” Raman spectroelectrochemical Studies of Poly (3,3’-dibutoxy-2,2’-bithiophene)", Macromolecules, 28, 4644-4649 (1995).
    80. V. Hernandez, F. J. Ramirez, T. F. Otero and J. T. L. Navarrete, "An interpretation of the vibrational spectra of insulating and electrically conducting poly (3-methylthiophene) aided by a theoretical dynamical model", J. Chem. Phys., 100(1), 114-129, (1994).
    81. 81. A. Galal, "Electrocatalytic oxidation of some biologically important compounds at conducting polymer electrodes modified by metal complexes", Journal of Solid State Electrochemistry, 2, 7-15 (1998).
    82. V. Hernandez, F. J. Ramirez, J. Casado and J. T. L. Navarrete, "Scaled quantum-mechanical force field and vibrational spectra of 3-methylthiophene", J. Phys. Chem., 100, 2907-2914 (1996).
    83. J. He, H. Zhou, F. Wan, Y. Lu and G. Xue, "SERS study of the high quality conducting polythiophene film", Vibrational Spectroscopy, 31, 265-269 (2003).
    84. A. J. Zhangm, G. R. Zhang, G. D. Yang, F. G. Ao and J. X. Lu, "Study on electrochemical copolymerization of aniline and 3-methylthiophene in HMIMBF4 ionic liquid and its properties", Chinese Journal of Chemistry, 25, 268-271 (2007).
    85. Z. W. Sun and A. J. Frank, "Characterization of the intrachain charge-generation mechanism of electronically conductive poly(3-methylthiophene)", J. Chem. Phys., 94(6), 4600-4608 (1991).
    86. H. J. Kim, D. C. Kim, R. Kim, J. Kim, D. H. Park, H. S. Kim, J. Joo and Y. D. Suh, "Confocal Raman spectroscopy of single poly(3-methylthiophene) nanotubes", Journal of Applied Physics, 101, 053514 (2007).
    87. E. A. Bazzaoui, G. LCvi, S. Aeiyach, J. Aubard, J. P. Marsault and P. C. Lacaze, "SERS spectra of polythiophene in doped and undoped states", J. Phys. Chem., 99, 6628-6634 (1995).
    88. N. F. Atta, A. Galal, A. E. Karagozler, H. Zimmer, J. F. Rubinson and H. B. Mark Jr., "Voltammetric studies of the oxidation of reduced nicotinamide adenine dinucleotide at a conducting polymer electrode", J. Chem. Soc., Chem. Commun., 1347-1349 (1990).
    89. P. Jeevanandam, K. J. Klabunde, S. H. Tetzler, "Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide", Microporous and Mesoporous Materials, 79, 101-110 (2005).
    90. A. Kelley, B. Angolia and I. Marawi, "Electrocatalytic activity of poly(3-methylthiophene) electrodes", Journal of Solid State Electrochemistry, 10, 397-404 (2006).
    91. J. Li and X. Q. Lin, "Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid", Analytica Chimica Acta, 596, 222-230 (2007).
    92. T.E. Smith, in: T.M. Devlin (Ed.), Textbook of Biochemistry with Clinical Correlations, Wiley/Liss, New York, 1992, p. 929.
    93. M. A. Dayton, A. G. Ewing and R. M. Wightman, "Response of micro- voltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions", Anal. Chem., 52 (14), 2392-2396 (1980).
    94. A. Fragoso, E. Almirall, R. Cao, L. Echegoyenb and R. G. Jonte, "A supramolecular approach to the selective detection of dopamine in the presence of ascorbate", Chem. Commun., 2230-2231 (2004).
    95. P. E. M. Phillips, G. D. Stuber, M. L. A. V. Heien, R. M. Wightman and R. M. Carelli, "Subsecond dopamine release promotes cocaine seeking", Nature, 422, 614-618 (2003).
    96. T. Liu, M. Li and Q. Li, "Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembled monolayer", Talanta, 63, 1053-1059 (2004).
    97. A. I. Gopalan, K. P. Lee,b, K. M. Manesha, P. Santhosh, J. H. Kim and J. S. Kanga, "Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode", Talanta, 71, 1774-1781 (2007).
    98. M. Ghita and D. W. M. Arrigan, "Dopamine voltammetry at overoxidised polyindole electrodes", Electrochimica Acta, 49, 4743-4751 (2004).
    99. L. Zhang, J. Jia, X. Zou and S. Dong, "Simultaneous determination of dopamine and ascorbic acid at an in-site functionalized self-assembled monolayer on gold electrode", Electroanalysis, 16, 1413-1418 (2004).
    100. H. S. Wang, T. H. Li, W. L. Jia and H. Y. Xu, "Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode", Biosensors and Bioelectronics, 22, 664-669 (2006).
    101. C. R. Raj, K. Tokuda and T. Ohsaka, "Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate", Bioelectrochemistry, 53, 183-191 (2001).
    102. F. Malem and D. Mandler, "Self-assembled monolayers in electroanalytical chemistry: application of .omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid", Anal. Chem., 65 (1), 37-41 (1993).
    103. M. Ghitaa and D. W.M. Arrigan, "Dopamine voltammetry at overoxidised polyindole electrodes", Electrochimica Acta, 49, 4743-4751 (2004).
    104. P. R. Roy, T. Okajima and T. Ohsaka, "Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N, N-dimethylaniline)-modified electrodes", Bioelectrochemistry, 59, 11-19 (2003).
    105. M. Zhang, K. Gong, H. Zhang and L. Mao, "Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid", Biosensors and Bioelectronics, 20, 1270-1276 (2005).
    106. Z. Wang, J. Liu, Q. Liang, Y. Wanga and G. Luo, "Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid", Analyst, 127, 653-658 (2002).
    107. Y. Zhang, Y. Cai and S. Su, "Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode", Analytical Biochemistry, 350, 285-291 (2006).
    108. A. I. Gopalan, K. P. Lee, K. M. Manesha, P. Santhosh, J. H. Kim and J. S. Kang, "Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode", Talanta, 71, 1774-1781 (2007).
    109. Z. Gao, B. Chen and M. Zi, "Voltammetric determination of dopamine in the presence of ascorbic acid at over-oxidized polypyrrole-indigo carmine film-coated electrodes", Analyst, 119, 459-464 (1994).
    110. B. Fang, G. Wang, W. Zhang, M. Li and X. Kan, "Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine", Electroanalysis, 17(9), 744-748 (2005).
    111. C. R. Raj, T. Okajima and T. Ohsaka, "Gold nanoparticle arrays for the voltammetric sensing of dopamine", Journal of Electroanalytical Chemistry, 543, 127-133 (2003).
    112. P. Wang, Y. Li, X. Huang and L. Wang, "Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid", Talanta, 73, 431-437 (2007).
    113. J. L. Conyers and H. S. White, "Electrochemical growth of Ag2S on Ag (111) electrodes. Coulometric and X-ray photoelectron spectroscopic analysis of the stepwise formation of the first and second monolayers of Ag2S", J. Phys. Chem. B, 103(11), 1960-1965 (1999).
    114. K. Reichelt and H. O. Lutz, "Hetero-epitaxial growth of vacuum evaporated silver and gold", Journal of Crystal Growth, 10, 103-107 (1971).
    115. H. Jaegera, P.D. Mercera and R. G. Sherwooda, "The structure of silver films deposited on mica substrates in ultra-high vacuum", Surface of Science, 6, 309-322 (1967).
    116. L. Armelao, R. Bertoncello, and M. De Dominicis, "Silver nanocluster formation in Silica coatings by the sol-gel route", Adv. Muter., 9, 736-740 (1997).
    117. D. W. Hatchett and H. S. White, "Electrochemistry of sulfur adlayers on the low-index faces of silver", J. Phys. Chem., 100(23), 9854-9859 (1996).
    118. B. R. Sankapal, R.S. Mane and C. D. Lokhande, "A new chemical method for the preparation of Ag2S thin films", Materials Chemistry and Physics, 63, 226-229 (2000).
    119. W. Zhang, L. Zhang, Z. Hui, X. Zhang and Yitai Qian, "Synthesis of nanocrystalline Ag2S in aqueous solution", Solid State Ionics, 130, 111-114 (2000).
    120. J. Jang, K. Cho, S. H. Lee, S. Kim, "Synthesis and electrical characteristics of Ag2S nanocrystals", Materials Letters, 62, 1438-1440 (2008).
    121. M. Rueda, A. Aldaz1 and F. Sanchez-Burgos, "Oxidation of L-ascorbic acid on a gold electrode", Electrochimica Acta, 23, 419-424 (1978).
    122. M. E. G. Lyons, W. Breen and John Cassidy, "Ascorbic acid oxidation at polypyrrole-coated electrodes", J. Chem. Soc. Faraday Trans., 87(1), 115-123 (1991).
    123. I. F. Hu and T. Kuwana, "Oxidative mechanism of ascorbic acid at glassy carbon electrodes", Anal. Chem., 58(14), 3235-3239 (1986).
    124. A. Ambrosi, A. Morrin, M. R. Smyth and A. J. Killard, "The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid", Analytica Chimica Acta, 609, 37-43 (2008).
    125. M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions", National Association of Corrosion Engineers, (1974).
    126. S. P. Mushran, M. C. Agrawal, R. M. Mehrotra and R. Sanehi, "Kinetics and mechanism of reduction of silver (Ⅰ) by Ascorbic Acid", J. C. S. Dalton, 1640-1642 (1973).
    127. K. P. Velikov, G. E. Zegers and A. V. Blaaderen, "Synthesis and characterization of large colloidal silver particles", Langmuir, 19 (4), 1384-1389 (2003).
    128. J. Gulens and D. W. Shoesmith, "Evidence for metallic Ag at the surface of Ag/Ag2S electrodes", J. Electrochem. Soc.: Electrochemical science and technology, 811-816 (1981).
    129. G.W. Warren, B. Drouven and D.W. Price, "Relationships between the Pourbaix diagram for Ag-S-H2O and electrochemical oxidation and reduction of Ag2S", Metallurgical Transactions B, 15B, 235-242 (1984).
    130. W. A. MacCrehan, "Differential pulse detection in liquid chromatography and its application to the measurement of organometal cations", Anal. Chem., 53 (1), 74-77 (1981)
    131. F. Chen, G. Shi, J. Zhang and M. Fu, "Raman spectroscopic studies on the structural changes of electrosynthesized polythiophene films during the heating and cooling processes", Thin Solid Films, 424, 283-290 (2003).

    下載圖示 校內:2011-07-14公開
    校外:2011-07-14公開
    QR CODE