| 研究生: |
李昀叡 Lee, Yun-Jui |
|---|---|
| 論文名稱: |
具圓極化之雙頻共平面波導饋入槽孔天線 A Dual-Band CPW-Fed Slot Antenna with Circular Polarization |
| 指導教授: |
李坤洲
Lee, Kun-Chou |
| 共同指導教授: |
王健仁
Wang, Chien-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 線性極化 、圓極化 、突出殘段之饋入線 、指形狹縫 、軸比 |
| 外文關鍵詞: | linear polarization, circular polarization, stub-protruded feedline, finger slit, axial ratio |
| 相關次數: | 點閱:129 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究在於設計一具圓極化雙頻共平面波導饋入之槽孔天線,利用共平面波導的饋入結構,與L形槽孔天線共同製作在基板的同一平面上,可以簡化整個設計的流程與實作上對位的問題。在50 Ω饋入線的末端加入突出殘段以達到較佳的阻抗匹配條件,藉由縮短L形槽孔其中一個天線臂的長度,產生相位差90度之兩個正交電場,激發出圓極化電磁波。此外,在已調整過尺寸之L形槽孔另一個天線臂末端,增加一指形狹縫,以及修改接地面的尺寸大小,使得阻抗頻寬有顯著的增加。所提出的雙頻L形槽孔天線,第一個頻帶以2.78 GHz為中心頻率,阻抗頻寬約為77.3 %,另一個以5.57 GHz為中心頻率的頻帶,阻抗頻寬約為23.7 %,同時,軸比頻寬也可達到15.1 %(最佳化可達22.0 %),天線可以應用在許多行動通訊系統,如DCS、PCS、WCDMA、SDAR、WLANs、LTE以及Hiper-LAN。
The study of the thesis is to present a design procedure for a dual-band CPW-fed linearly and circularly polarized (CP) antenna based on the L-shaped slot antenna. The slot antenna and the feeding structure are fabricated on the same plane of the substrate so that circuit processes and position alignment can be simplified. By shortening the length of one arm of the L-slot, an additional mode with two orthogonal electrical fields with a phase difference of 90 degree is excited, so that the circularly polarized wave can also be excited. The enhancement of the resonant bandwidth is achieved by utilizing a stub-protruded feedline, adding one finger slit at the other arm slot, and tuning the dimension of the ground plane. Through modification with antennas of various geometrical parameters, the proposed antenna exhibits a wide bandwidth in the desired frequency bands, which has one bandwidth of 77.3 % at 2.78 GHz and the other one of 23.7 % at 5.57 GHz for an input reflection coefficient of less than -10 dB. Meanwhile, the antenna has a 3-dB axial ratio (AR) bandwidth of 15.1 %. A bandwidth of 22.0 % (2.23-2.78 GHz) is achieved with an axial ratio < 3 dB for the optimized case.
[1] Deploying License-Exempt WiMAX Solutions Intel Corp. Santa Clara, CA, 2005. (http://www.intel.com/netcomms/technologies/wimax)
[2] J. D. Kraus and R. J. Marhefka, Antennas: for all applications, 3rd ed., McGraw-Hill, New York, NY, 2003, Chapter 9.
[3] H. G. Booker, “Slot aerials and their relation to complementary wire aerials,” J. IEE (London), part 3A, vol. 93, pp. 620-626, 1946.
[4] I. C. Deng, R. J. Lin, K. M. Chang and J. B. Chen, “Study of a circularly polarized CPW-fed inductive square slot antenna,” Microw. Opt. Technol. Lett., vol. 48, no. 8, pp. 1665-1667, Aug. 2006.
[5] I. C. Deng, Q. X. Ke, R. J. Lin and Y. T. King, “A circular CPW-fed slot antenna resonated by the circular loop for broadband circularly polarized radiation,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1423-1426, May 2008.
[6] J. Y. Sze, J. C. Wang and C. C. Chang, “Axial-ratio bandwidth enhancement of asymmetric-CPW-fed circularly-polarised square slot antenna,” Electron. Lett., vol. 44, no. 18, pp. 1048-1049, Aug. 2008.
[7] M. Kahrizi, T. K. Sarkar, and Z. A. Maricevic, “Analysis of a wide radiating slot in the ground plane of a microstrip line,” IEEE Trans. Microwave Theory Tech., vol. 41, no. 1, pp. 29-37, Jan. 1993.
[8] J.-Y. Sze and K.-L. Wong, “Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna,” IEEE Trans. Antennas Propag., vol. 49, no. 7, pp. 1020-1024, Jul. 2001.
[9] A. Dastranj, A. Imani and M. Naser-Moghaddasi, “Printed wide-slot antenna for wideband applications,” IEEE Trans. Antennas Propaga., vol. 56, no. 10, pp. 3097-3102, Oct. 2008.
[10] C.-J. Wang and W.-T. Tsai, “A stair-shaped slot antenna for the triple-band WLAN applications,” Micro. Opt. Technol. Lett., vol. 39, no. 5, pp. 370-372, Dec. 5, 2003.
[11] H. Tehrani and K. Chang, “Multi-frequency operation of microstrip-fed slot-ring antennas on thin low-dielectric permittivity substrates,” IEEE Trans. Antennas Propag., vol. 50, no. 9, pp. 1299-1308, Sep. 2002.
[12] D. S. Filipovic and J. L. Volakis, “Novel slot spiral antenna designs for dual-band/multiband operation,” IEEE Trans. Antennas Propaga., vol. 51, no. 3, pp. 430-440, Mar. 2003.
[13] S.-L. Steven Yang, Ahmed A. Kishk, and K.-F. Lee, “Wideband circularly polarized antenna with L-shaped slot,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1780-1783, Jun. 2008.
[14] C.-J. Wang and C.-H. Chen, “CPW-fed stair-shaped slot antennas with circular polarization,” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2483-2486, Aug. 2009.
[15] Q. Li and Z. Shen, “An inverted microstrip-fed cavity-backed slot antenna for circular polarization,” IEEE Antennas Wireless Propag. Lett., vol. 1, pp. 190-192, 2002.
[16] C. P. Wen, “Coplanar Waveguide : A surface strip transmission line suitable for nonreciprocal gyro magnetic device applications,” IEEE Trans. Microw. Theory Tech., vol. 17, pp. 1087-1090, Dec. 1969.
[17] W. L. Stutzman and G. A. Thiele, Antennas theory and design, 2nd ed., Wiley, Hoboken, NJ, 1998, Chapter 7.
[18] S. Silver, Microwave Antennas theory and design, MIT Radiation Laboratory Series, vol. 12, McGraw-Hill, New York, NY, 1949.
[19] B. Y. Toh, R. Cahill, and V. F. Fusco, “Understanding and measuring circular polarization”, IEEE Trans. on Education, vol. 46, no. 3, pp. 313-318, Aug. 2003.
[20] G. E. Evans, Antenna Measurement Techniques. Artech House, Norwood, MA, 1990.
[21] R. C. Johnson and H. Jasik, Antenna Engineering Handbook. McGraw-Hill, New York, NY, 1984.
[22] IEEE Standard Test Procedures for Antennas, IEEE Standard 149, 1979.
[23] 毛乃宏,天線測量手冊,國防工業出版社,1987。
[24] C. J. Wang, “A CPW-fed wideband spiral slot antenna with circular polarization”, Microw. Opt. Technol. Lett., vol. 52, no. 5, pp. 1204-1208, Jan. 2010.
[25] T. Dissanayake and K. P. Esselle, “UWB performance of compact L-shaped wide slot antennas,” IEEE Trans. Antennas and Propag., vol. 56, no. 4, pp. 1183-1187, Apr. 2008.